Matches in SemOpenAlex for { <https://semopenalex.org/work/W2117684310> ?p ?o ?g. }
- W2117684310 endingPage "127" @default.
- W2117684310 startingPage "113" @default.
- W2117684310 abstract "A central problem in data analysis is the low dimensional representation of high dimensional data and the concise description of its underlying geometry and density. In the analysis of large scale simulations of complex dynamical systems, where the notion of time evolution comes into play, important problems are the identification of slow variables and dynamically meaningful reaction coordinates that capture the long time evolution of the system. In this paper we provide a unifying view of these apparently different tasks, by considering a family of diffusion maps , defined as the embedding of complex (high dimensional) data onto a low dimensional Euclidean space, via the eigenvectors of suitably defined random walks defined on the given datasets. Assuming that the data is randomly sampled from an underlying general probability distribution p ( x ) = e − U ( x ) , we show that as the number of samples goes to infinity, the eigenvectors of each diffusion map converge to the eigenfunctions of a corresponding differential operator defined on the support of the probability distribution. Different normalizations of the Markov chain on the graph lead to different limiting differential operators. Specifically, the normalized graph Laplacian leads to a backward Fokker–Planck operator with an underlying potential of 2 U ( x ) , best suited for spectral clustering. A different anisotropic normalization of the random walk leads to the backward Fokker–Planck operator with the potential U ( x ) , best suited for the analysis of the long time asymptotics of high dimensional stochastic systems governed by a stochastic differential equation with the same potential U ( x ) . Finally, yet another normalization leads to the eigenfunctions of the Laplace–Beltrami (heat) operator on the manifold in which the data resides, best suited for the analysis of the geometry of the dataset regardless of its possibly non-uniform density." @default.
- W2117684310 created "2016-06-24" @default.
- W2117684310 creator A5033736096 @default.
- W2117684310 creator A5034942163 @default.
- W2117684310 creator A5036566464 @default.
- W2117684310 creator A5083775994 @default.
- W2117684310 date "2006-07-01" @default.
- W2117684310 modified "2023-10-04" @default.
- W2117684310 title "Diffusion maps, spectral clustering and reaction coordinates of dynamical systems" @default.
- W2117684310 cites W1966347620 @default.
- W2117684310 cites W1975378726 @default.
- W2117684310 cites W1984414107 @default.
- W2117684310 cites W2006554089 @default.
- W2117684310 cites W2044506145 @default.
- W2117684310 cites W2064556178 @default.
- W2117684310 cites W2070460788 @default.
- W2117684310 cites W2089022222 @default.
- W2117684310 cites W2097308346 @default.
- W2117684310 cites W2103829273 @default.
- W2117684310 cites W2111818440 @default.
- W2117684310 cites W2156603435 @default.
- W2117684310 cites W1866611211 @default.
- W2117684310 doi "https://doi.org/10.1016/j.acha.2005.07.004" @default.
- W2117684310 hasPublicationYear "2006" @default.
- W2117684310 type Work @default.
- W2117684310 sameAs 2117684310 @default.
- W2117684310 citedByCount "568" @default.
- W2117684310 countsByYear W21176843102012 @default.
- W2117684310 countsByYear W21176843102013 @default.
- W2117684310 countsByYear W21176843102014 @default.
- W2117684310 countsByYear W21176843102015 @default.
- W2117684310 countsByYear W21176843102016 @default.
- W2117684310 countsByYear W21176843102017 @default.
- W2117684310 countsByYear W21176843102018 @default.
- W2117684310 countsByYear W21176843102019 @default.
- W2117684310 countsByYear W21176843102020 @default.
- W2117684310 countsByYear W21176843102021 @default.
- W2117684310 countsByYear W21176843102022 @default.
- W2117684310 countsByYear W21176843102023 @default.
- W2117684310 crossrefType "journal-article" @default.
- W2117684310 hasAuthorship W2117684310A5033736096 @default.
- W2117684310 hasAuthorship W2117684310A5034942163 @default.
- W2117684310 hasAuthorship W2117684310A5036566464 @default.
- W2117684310 hasAuthorship W2117684310A5083775994 @default.
- W2117684310 hasBestOaLocation W21176843101 @default.
- W2117684310 hasConcept C104317684 @default.
- W2117684310 hasConcept C105611402 @default.
- W2117684310 hasConcept C105795698 @default.
- W2117684310 hasConcept C121194460 @default.
- W2117684310 hasConcept C121332964 @default.
- W2117684310 hasConcept C121864883 @default.
- W2117684310 hasConcept C134306372 @default.
- W2117684310 hasConcept C151876577 @default.
- W2117684310 hasConcept C154945302 @default.
- W2117684310 hasConcept C158448853 @default.
- W2117684310 hasConcept C158693339 @default.
- W2117684310 hasConcept C165700671 @default.
- W2117684310 hasConcept C17020691 @default.
- W2117684310 hasConcept C185592680 @default.
- W2117684310 hasConcept C2777952282 @default.
- W2117684310 hasConcept C33923547 @default.
- W2117684310 hasConcept C41008148 @default.
- W2117684310 hasConcept C55128770 @default.
- W2117684310 hasConcept C55493867 @default.
- W2117684310 hasConcept C62520636 @default.
- W2117684310 hasConcept C70518039 @default.
- W2117684310 hasConcept C73555534 @default.
- W2117684310 hasConcept C79379906 @default.
- W2117684310 hasConcept C86339819 @default.
- W2117684310 hasConcept C98763669 @default.
- W2117684310 hasConceptScore W2117684310C104317684 @default.
- W2117684310 hasConceptScore W2117684310C105611402 @default.
- W2117684310 hasConceptScore W2117684310C105795698 @default.
- W2117684310 hasConceptScore W2117684310C121194460 @default.
- W2117684310 hasConceptScore W2117684310C121332964 @default.
- W2117684310 hasConceptScore W2117684310C121864883 @default.
- W2117684310 hasConceptScore W2117684310C134306372 @default.
- W2117684310 hasConceptScore W2117684310C151876577 @default.
- W2117684310 hasConceptScore W2117684310C154945302 @default.
- W2117684310 hasConceptScore W2117684310C158448853 @default.
- W2117684310 hasConceptScore W2117684310C158693339 @default.
- W2117684310 hasConceptScore W2117684310C165700671 @default.
- W2117684310 hasConceptScore W2117684310C17020691 @default.
- W2117684310 hasConceptScore W2117684310C185592680 @default.
- W2117684310 hasConceptScore W2117684310C2777952282 @default.
- W2117684310 hasConceptScore W2117684310C33923547 @default.
- W2117684310 hasConceptScore W2117684310C41008148 @default.
- W2117684310 hasConceptScore W2117684310C55128770 @default.
- W2117684310 hasConceptScore W2117684310C55493867 @default.
- W2117684310 hasConceptScore W2117684310C62520636 @default.
- W2117684310 hasConceptScore W2117684310C70518039 @default.
- W2117684310 hasConceptScore W2117684310C73555534 @default.
- W2117684310 hasConceptScore W2117684310C79379906 @default.
- W2117684310 hasConceptScore W2117684310C86339819 @default.
- W2117684310 hasConceptScore W2117684310C98763669 @default.
- W2117684310 hasIssue "1" @default.
- W2117684310 hasLocation W21176843101 @default.
- W2117684310 hasLocation W21176843102 @default.