Matches in SemOpenAlex for { <https://semopenalex.org/work/W2117767148> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W2117767148 endingPage "178" @default.
- W2117767148 startingPage "175" @default.
- W2117767148 abstract "The information about the location and area of vegetation fields has great impact on emerging Remote sensing applications. Remote sensing techniques have been developed to allow researchers to accurately clas- sify large vegetation area at reduced cost. In this paper the ultimate intention is to develop an operational method for assessing vegetation area that would facilitate developing remote sensing based algorithms for assessing vegetation fields and land surfaces in major areas. The Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra satellite offers a good potential for as- sessing vegetation area. Here MOD13A3 of the MODIS/Terra Vegetation Indices is used. By applying segmentation techniques vegeta- tion area is differentiated from non crop area. It provides opportunity to retrieve parameters that can be used to assess fields whether the acquired field is vegetation area (crop) or land surface. This significant improvement can help researchers to create superior crop type classification maps and therefore have the opportunity to make better informed decisions. General Terms Segmentation, Classification, Training, Testing. This paper deals with four themes: The Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra satel- lite offers a good potential for assessing vegetation area as well as provide opportunity to retrieve parameters that can be used to assess vegetation yields. 1. It describes the use of MODIS Terra data at 500 m resolution for classification of vegetation area in cuddalore district of Ta- mil Nadu. 2. Imfilter is used for pixel correction. Since the majority of the area in the provinces were natural vegetation (trees, shrubs, rangeland) it was important to develop a vegetation classifica- tion to monitor the vegetation condition during the growing season. 3. The normalized difference vegetation index was tracked through the growing season to assess the changes in vegetation area that is an indication of potential yields for the current sea- son in comparison with previous years. 4. K-means clustering is applied to segment vegetation and land surface area as it is a partitioning method. The function k-means partitions data into k mutually exclusive clusters, and returns the index of the cluster to which it has assigned each observa- tion. The iterative algorithm minimizes the sum of distances from each object to its cluster centroid, over all clusters. This algo- rithm moves objects between clusters until the sum cannot be decreased further. The result is a set of clusters." @default.
- W2117767148 created "2016-06-24" @default.
- W2117767148 creator A5079705390 @default.
- W2117767148 creator A5084039750 @default.
- W2117767148 date "2012-06-01" @default.
- W2117767148 modified "2023-10-16" @default.
- W2117767148 title "Vegetation Area Classification Using Modis Imagery" @default.
- W2117767148 cites W1996379121 @default.
- W2117767148 doi "https://doi.org/10.15373/22778179/apr2014/60" @default.
- W2117767148 hasPublicationYear "2012" @default.
- W2117767148 type Work @default.
- W2117767148 sameAs 2117767148 @default.
- W2117767148 citedByCount "0" @default.
- W2117767148 crossrefType "journal-article" @default.
- W2117767148 hasAuthorship W2117767148A5079705390 @default.
- W2117767148 hasAuthorship W2117767148A5084039750 @default.
- W2117767148 hasConcept C142724271 @default.
- W2117767148 hasConcept C205649164 @default.
- W2117767148 hasConcept C2776054349 @default.
- W2117767148 hasConcept C2776133958 @default.
- W2117767148 hasConcept C2778102629 @default.
- W2117767148 hasConcept C39432304 @default.
- W2117767148 hasConcept C58640448 @default.
- W2117767148 hasConcept C62649853 @default.
- W2117767148 hasConcept C71924100 @default.
- W2117767148 hasConceptScore W2117767148C142724271 @default.
- W2117767148 hasConceptScore W2117767148C205649164 @default.
- W2117767148 hasConceptScore W2117767148C2776054349 @default.
- W2117767148 hasConceptScore W2117767148C2776133958 @default.
- W2117767148 hasConceptScore W2117767148C2778102629 @default.
- W2117767148 hasConceptScore W2117767148C39432304 @default.
- W2117767148 hasConceptScore W2117767148C58640448 @default.
- W2117767148 hasConceptScore W2117767148C62649853 @default.
- W2117767148 hasConceptScore W2117767148C71924100 @default.
- W2117767148 hasIssue "4" @default.
- W2117767148 hasLocation W21177671481 @default.
- W2117767148 hasOpenAccess W2117767148 @default.
- W2117767148 hasPrimaryLocation W21177671481 @default.
- W2117767148 hasRelatedWork W2059207693 @default.
- W2117767148 hasRelatedWork W2101051003 @default.
- W2117767148 hasRelatedWork W2103778279 @default.
- W2117767148 hasRelatedWork W2117767148 @default.
- W2117767148 hasRelatedWork W2589071916 @default.
- W2117767148 hasRelatedWork W2955477134 @default.
- W2117767148 hasRelatedWork W3027311362 @default.
- W2117767148 hasRelatedWork W3107017780 @default.
- W2117767148 hasRelatedWork W2910156491 @default.
- W2117767148 hasRelatedWork W2910797470 @default.
- W2117767148 hasVolume "3" @default.
- W2117767148 isParatext "false" @default.
- W2117767148 isRetracted "false" @default.
- W2117767148 magId "2117767148" @default.
- W2117767148 workType "article" @default.