Matches in SemOpenAlex for { <https://semopenalex.org/work/W2117804954> ?p ?o ?g. }
- W2117804954 endingPage "24" @default.
- W2117804954 startingPage "1" @default.
- W2117804954 abstract "In constructing local Fourier bases and in solving differential equations with nonperiodic solutions through Fourier spectral algorithms, it is necessary to solve the Fourier Extension Problem. This is the task of extending a nonperiodic function, defined on an interval $$x in [-chi, chi]$$ , to a function $$tilde{f}$$ which is periodic on the larger interval $$x in [-Theta, Theta]$$ . We derive the asymptotic Fourier coefficients for an infinitely differentiable function which is one on an interval $$x in [-chi, chi]$$ , identically zero for $$|x| < Theta$$ , and varies smoothly in between. Such smoothed “top-hat” functions are “bells” in wavelet theory. Our bell is (for x ≥ 0) $$mathcal{T}(x; L, chi, Theta)=(1+mbox{erf}(z))/2$$ where $$z=L xi/sqrt{1-xi^{2}}$$ where $$xi equiv -1 + 2 (Theta-x)/(Theta - chi)$$ . By applying steepest descents to approximate the coefficient integrals in the limit of large degree j, we show that when the width L is fixed, the Fourier cosine coefficients a j of $$mathcal{T}$$ on $$x in [-Theta, Theta]$$ are proportional to $$a_{j} sim (1/j) exp(- L pi^{1/2} 2^{-1/2} (1-chi/Theta)^{1/2} j^{1/2}) Lambda(j)$$ where Λ(j) is an oscillatory factor of degree given in the text. We also show that to minimize error in a Fourier series truncated after the Nth term, the width should be chosen to increase with N as $$L=0.91 sqrt{1 - chi/Theta} N^{1/2}$$ . We derive similar asymptotics for the function f(x)=x as extended by a more sophisticated scheme with overlapping bells; this gives an even faster rate of Fourier convergence" @default.
- W2117804954 created "2016-06-24" @default.
- W2117804954 creator A5074056648 @default.
- W2117804954 date "2005-11-17" @default.
- W2117804954 modified "2023-09-25" @default.
- W2117804954 title "Asymptotic Fourier Coefficients for a C∞ Bell (Smoothed-“Top-Hat”) & the Fourier Extension Problem" @default.
- W2117804954 cites W1497066224 @default.
- W2117804954 cites W1621158592 @default.
- W2117804954 cites W1965328196 @default.
- W2117804954 cites W1967746776 @default.
- W2117804954 cites W1969569206 @default.
- W2117804954 cites W1972021656 @default.
- W2117804954 cites W1975076103 @default.
- W2117804954 cites W1998378674 @default.
- W2117804954 cites W2004650231 @default.
- W2117804954 cites W2005361953 @default.
- W2117804954 cites W2014326438 @default.
- W2117804954 cites W2027863489 @default.
- W2117804954 cites W2029638418 @default.
- W2117804954 cites W2033942740 @default.
- W2117804954 cites W2036151795 @default.
- W2117804954 cites W2036740708 @default.
- W2117804954 cites W2036899999 @default.
- W2117804954 cites W2038290598 @default.
- W2117804954 cites W2045974403 @default.
- W2117804954 cites W2049283515 @default.
- W2117804954 cites W2049967281 @default.
- W2117804954 cites W2065378774 @default.
- W2117804954 cites W2065522541 @default.
- W2117804954 cites W2066187209 @default.
- W2117804954 cites W2067331255 @default.
- W2117804954 cites W2072022733 @default.
- W2117804954 cites W2078959912 @default.
- W2117804954 cites W2083002517 @default.
- W2117804954 cites W2085219161 @default.
- W2117804954 cites W2087738476 @default.
- W2117804954 cites W2091701994 @default.
- W2117804954 cites W2093512865 @default.
- W2117804954 cites W2161326618 @default.
- W2117804954 cites W2181255917 @default.
- W2117804954 cites W2262156282 @default.
- W2117804954 cites W4205902726 @default.
- W2117804954 doi "https://doi.org/10.1007/s10915-005-9010-7" @default.
- W2117804954 hasPublicationYear "2005" @default.
- W2117804954 type Work @default.
- W2117804954 sameAs 2117804954 @default.
- W2117804954 citedByCount "21" @default.
- W2117804954 countsByYear W21178049542013 @default.
- W2117804954 countsByYear W21178049542014 @default.
- W2117804954 countsByYear W21178049542017 @default.
- W2117804954 countsByYear W21178049542018 @default.
- W2117804954 countsByYear W21178049542019 @default.
- W2117804954 countsByYear W21178049542020 @default.
- W2117804954 countsByYear W21178049542021 @default.
- W2117804954 countsByYear W21178049542022 @default.
- W2117804954 crossrefType "journal-article" @default.
- W2117804954 hasAuthorship W2117804954A5074056648 @default.
- W2117804954 hasBestOaLocation W21178049542 @default.
- W2117804954 hasConcept C102519508 @default.
- W2117804954 hasConcept C114614502 @default.
- W2117804954 hasConcept C121332964 @default.
- W2117804954 hasConcept C134306372 @default.
- W2117804954 hasConcept C14036430 @default.
- W2117804954 hasConcept C202615002 @default.
- W2117804954 hasConcept C207864730 @default.
- W2117804954 hasConcept C24209939 @default.
- W2117804954 hasConcept C24890656 @default.
- W2117804954 hasConcept C2775997480 @default.
- W2117804954 hasConcept C2778067643 @default.
- W2117804954 hasConcept C33923547 @default.
- W2117804954 hasConcept C78458016 @default.
- W2117804954 hasConcept C86803240 @default.
- W2117804954 hasConceptScore W2117804954C102519508 @default.
- W2117804954 hasConceptScore W2117804954C114614502 @default.
- W2117804954 hasConceptScore W2117804954C121332964 @default.
- W2117804954 hasConceptScore W2117804954C134306372 @default.
- W2117804954 hasConceptScore W2117804954C14036430 @default.
- W2117804954 hasConceptScore W2117804954C202615002 @default.
- W2117804954 hasConceptScore W2117804954C207864730 @default.
- W2117804954 hasConceptScore W2117804954C24209939 @default.
- W2117804954 hasConceptScore W2117804954C24890656 @default.
- W2117804954 hasConceptScore W2117804954C2775997480 @default.
- W2117804954 hasConceptScore W2117804954C2778067643 @default.
- W2117804954 hasConceptScore W2117804954C33923547 @default.
- W2117804954 hasConceptScore W2117804954C78458016 @default.
- W2117804954 hasConceptScore W2117804954C86803240 @default.
- W2117804954 hasIssue "1" @default.
- W2117804954 hasLocation W21178049541 @default.
- W2117804954 hasLocation W21178049542 @default.
- W2117804954 hasLocation W21178049543 @default.
- W2117804954 hasOpenAccess W2117804954 @default.
- W2117804954 hasPrimaryLocation W21178049541 @default.
- W2117804954 hasRelatedWork W2065770361 @default.
- W2117804954 hasRelatedWork W2165559438 @default.
- W2117804954 hasRelatedWork W2202686583 @default.
- W2117804954 hasRelatedWork W2804117584 @default.
- W2117804954 hasRelatedWork W2945283683 @default.
- W2117804954 hasRelatedWork W3015266405 @default.