Matches in SemOpenAlex for { <https://semopenalex.org/work/W2117905833> ?p ?o ?g. }
- W2117905833 abstract "A fundamental challenge in calcium imaging has been to infer spike rates of neurons from the measured noisy calcium fluorescence traces. We systematically evaluate a range of spike inference algorithms on a large benchmark dataset (>100.000 spikes) recorded from varying neural tissue (V1 and retina) using different calcium indicators (OGB-1 and GCaMP6). We introduce a new algorithm based on supervised learning in flexible probabilistic models and show that it outperforms all previously published techniques. Importantly, it even performs better than other algorithms when applied to entirely new datasets for which no simultaneously recorded data is available. Future data acquired in new experimental conditions can easily be used to further improve its spike prediction accuracy and generalization performance. Finally, we show that comparing algorithms on artificial data is not informative about performance on real data, suggesting that benchmark datasets such as the one we provide may greatly facilitate future algorithmic developments" @default.
- W2117905833 created "2016-06-24" @default.
- W2117905833 creator A5009273790 @default.
- W2117905833 creator A5032509976 @default.
- W2117905833 creator A5041064065 @default.
- W2117905833 creator A5043130208 @default.
- W2117905833 creator A5054637446 @default.
- W2117905833 creator A5057926431 @default.
- W2117905833 creator A5061457780 @default.
- W2117905833 creator A5067278835 @default.
- W2117905833 creator A5079111732 @default.
- W2117905833 date "2014-10-28" @default.
- W2117905833 modified "2023-10-17" @default.
- W2117905833 title "Supervised learning sets benchmark for robust spike rate inference from calcium imaging signals" @default.
- W2117905833 cites W1865012405 @default.
- W2117905833 cites W1889678891 @default.
- W2117905833 cites W1964869608 @default.
- W2117905833 cites W1975212040 @default.
- W2117905833 cites W1982105314 @default.
- W2117905833 cites W1987278178 @default.
- W2117905833 cites W1993514627 @default.
- W2117905833 cites W1994955957 @default.
- W2117905833 cites W2000359198 @default.
- W2117905833 cites W2004900646 @default.
- W2117905833 cites W2010274831 @default.
- W2117905833 cites W2012491533 @default.
- W2117905833 cites W2014381155 @default.
- W2117905833 cites W2045914027 @default.
- W2117905833 cites W2046031057 @default.
- W2117905833 cites W2047859476 @default.
- W2117905833 cites W2055725584 @default.
- W2117905833 cites W2057881395 @default.
- W2117905833 cites W2061464631 @default.
- W2117905833 cites W2062382534 @default.
- W2117905833 cites W2067474937 @default.
- W2117905833 cites W2079418422 @default.
- W2117905833 cites W2080092859 @default.
- W2117905833 cites W2080275784 @default.
- W2117905833 cites W2094045132 @default.
- W2117905833 cites W2098997175 @default.
- W2117905833 cites W2101234009 @default.
- W2117905833 cites W2106924853 @default.
- W2117905833 cites W2108094133 @default.
- W2117905833 cites W2108193821 @default.
- W2117905833 cites W2140972252 @default.
- W2117905833 cites W2157774966 @default.
- W2117905833 cites W2158698691 @default.
- W2117905833 cites W2171332611 @default.
- W2117905833 doi "https://doi.org/10.1101/010777" @default.
- W2117905833 hasPublicationYear "2014" @default.
- W2117905833 type Work @default.
- W2117905833 sameAs 2117905833 @default.
- W2117905833 citedByCount "4" @default.
- W2117905833 countsByYear W21179058332015 @default.
- W2117905833 countsByYear W21179058332016 @default.
- W2117905833 countsByYear W21179058332018 @default.
- W2117905833 countsByYear W21179058332021 @default.
- W2117905833 crossrefType "posted-content" @default.
- W2117905833 hasAuthorship W2117905833A5009273790 @default.
- W2117905833 hasAuthorship W2117905833A5032509976 @default.
- W2117905833 hasAuthorship W2117905833A5041064065 @default.
- W2117905833 hasAuthorship W2117905833A5043130208 @default.
- W2117905833 hasAuthorship W2117905833A5054637446 @default.
- W2117905833 hasAuthorship W2117905833A5057926431 @default.
- W2117905833 hasAuthorship W2117905833A5061457780 @default.
- W2117905833 hasAuthorship W2117905833A5067278835 @default.
- W2117905833 hasAuthorship W2117905833A5079111732 @default.
- W2117905833 hasBestOaLocation W21179058331 @default.
- W2117905833 hasConcept C11413529 @default.
- W2117905833 hasConcept C115903868 @default.
- W2117905833 hasConcept C119857082 @default.
- W2117905833 hasConcept C13280743 @default.
- W2117905833 hasConcept C134306372 @default.
- W2117905833 hasConcept C153180895 @default.
- W2117905833 hasConcept C154945302 @default.
- W2117905833 hasConcept C159985019 @default.
- W2117905833 hasConcept C177148314 @default.
- W2117905833 hasConcept C185798385 @default.
- W2117905833 hasConcept C192562407 @default.
- W2117905833 hasConcept C204323151 @default.
- W2117905833 hasConcept C205649164 @default.
- W2117905833 hasConcept C2776214188 @default.
- W2117905833 hasConcept C2781390188 @default.
- W2117905833 hasConcept C33923547 @default.
- W2117905833 hasConcept C41008148 @default.
- W2117905833 hasConcept C49937458 @default.
- W2117905833 hasConceptScore W2117905833C11413529 @default.
- W2117905833 hasConceptScore W2117905833C115903868 @default.
- W2117905833 hasConceptScore W2117905833C119857082 @default.
- W2117905833 hasConceptScore W2117905833C13280743 @default.
- W2117905833 hasConceptScore W2117905833C134306372 @default.
- W2117905833 hasConceptScore W2117905833C153180895 @default.
- W2117905833 hasConceptScore W2117905833C154945302 @default.
- W2117905833 hasConceptScore W2117905833C159985019 @default.
- W2117905833 hasConceptScore W2117905833C177148314 @default.
- W2117905833 hasConceptScore W2117905833C185798385 @default.
- W2117905833 hasConceptScore W2117905833C192562407 @default.
- W2117905833 hasConceptScore W2117905833C204323151 @default.
- W2117905833 hasConceptScore W2117905833C205649164 @default.
- W2117905833 hasConceptScore W2117905833C2776214188 @default.