Matches in SemOpenAlex for { <https://semopenalex.org/work/W2117968368> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2117968368 endingPage "563" @default.
- W2117968368 startingPage "527" @default.
- W2117968368 abstract "This paper is concerned with the geometric and measure-theoretic structure of the limit set of a Fuchsian group. By a Fuchsian group we shall understand a finitely generated Fuchsian group; we shall not attempt to investigate the pathologies of infinitely generated Fuchsian groups. The present work splits into two parts. Up to § 7 we give a complete account of the geometry of the action of a Fuchsian group both on the open disk and on the unit circle. Although this has been studied in the past, the account given here is more detailed and systematic than anything in the literature. The detail, which at times may seem excessive, is required for applications in the second part. The other part §§8—10, adopts the following point of view. The rational numbers can be characterized as the parabolic vertices of the modular group r . The theory of diophantine approximation (see, for example, Cassels 1965) gives ways of describing how well the rationals approximate a given number. The corresponding question for a Fuchsian group is: how well do the images of a distinguished point approximate an arbitrary limit point? This problem has already been raised by (Rankin 1957) and (Lehner 1964), and to some extent answered by them. The first part of this paper contains a complete solution. In the second part we push the analogy further and seek theorems concerning the behaviour of almost all points-that is, corresponding to ‘metric number theory’. In fact we can obtain results almost (but not quite) as sharp as their classical counterparts. This is carried out in § 9 and the structure of the exceptional set is described in § 10. O f course, this is only meaningful for groups of the first kind." @default.
- W2117968368 created "2016-06-24" @default.
- W2117968368 creator A5039730318 @default.
- W2117968368 date "1976-07-13" @default.
- W2117968368 modified "2023-09-23" @default.
- W2117968368 title "Diophantine approximation in Fuchsian groups" @default.
- W2117968368 cites W1550529667 @default.
- W2117968368 cites W2032806608 @default.
- W2117968368 cites W2081606309 @default.
- W2117968368 cites W2162259165 @default.
- W2117968368 cites W2334084401 @default.
- W2117968368 cites W2044471586 @default.
- W2117968368 doi "https://doi.org/10.1098/rsta.1976.0063" @default.
- W2117968368 hasPublicationYear "1976" @default.
- W2117968368 type Work @default.
- W2117968368 sameAs 2117968368 @default.
- W2117968368 citedByCount "64" @default.
- W2117968368 countsByYear W21179683682012 @default.
- W2117968368 countsByYear W21179683682013 @default.
- W2117968368 countsByYear W21179683682014 @default.
- W2117968368 countsByYear W21179683682015 @default.
- W2117968368 countsByYear W21179683682016 @default.
- W2117968368 countsByYear W21179683682018 @default.
- W2117968368 countsByYear W21179683682019 @default.
- W2117968368 countsByYear W21179683682020 @default.
- W2117968368 countsByYear W21179683682021 @default.
- W2117968368 countsByYear W21179683682023 @default.
- W2117968368 crossrefType "journal-article" @default.
- W2117968368 hasAuthorship W2117968368A5039730318 @default.
- W2117968368 hasConcept C102966492 @default.
- W2117968368 hasConcept C134306372 @default.
- W2117968368 hasConcept C136119220 @default.
- W2117968368 hasConcept C13862481 @default.
- W2117968368 hasConcept C151201525 @default.
- W2117968368 hasConcept C169654258 @default.
- W2117968368 hasConcept C178790620 @default.
- W2117968368 hasConcept C181633103 @default.
- W2117968368 hasConcept C185592680 @default.
- W2117968368 hasConcept C202444582 @default.
- W2117968368 hasConcept C206530611 @default.
- W2117968368 hasConcept C2524010 @default.
- W2117968368 hasConcept C2780009758 @default.
- W2117968368 hasConcept C2781311116 @default.
- W2117968368 hasConcept C28719098 @default.
- W2117968368 hasConcept C33923547 @default.
- W2117968368 hasConcept C41008148 @default.
- W2117968368 hasConcept C46875033 @default.
- W2117968368 hasConcept C77088390 @default.
- W2117968368 hasConceptScore W2117968368C102966492 @default.
- W2117968368 hasConceptScore W2117968368C134306372 @default.
- W2117968368 hasConceptScore W2117968368C136119220 @default.
- W2117968368 hasConceptScore W2117968368C13862481 @default.
- W2117968368 hasConceptScore W2117968368C151201525 @default.
- W2117968368 hasConceptScore W2117968368C169654258 @default.
- W2117968368 hasConceptScore W2117968368C178790620 @default.
- W2117968368 hasConceptScore W2117968368C181633103 @default.
- W2117968368 hasConceptScore W2117968368C185592680 @default.
- W2117968368 hasConceptScore W2117968368C202444582 @default.
- W2117968368 hasConceptScore W2117968368C206530611 @default.
- W2117968368 hasConceptScore W2117968368C2524010 @default.
- W2117968368 hasConceptScore W2117968368C2780009758 @default.
- W2117968368 hasConceptScore W2117968368C2781311116 @default.
- W2117968368 hasConceptScore W2117968368C28719098 @default.
- W2117968368 hasConceptScore W2117968368C33923547 @default.
- W2117968368 hasConceptScore W2117968368C41008148 @default.
- W2117968368 hasConceptScore W2117968368C46875033 @default.
- W2117968368 hasConceptScore W2117968368C77088390 @default.
- W2117968368 hasIssue "1309" @default.
- W2117968368 hasLocation W21179683681 @default.
- W2117968368 hasOpenAccess W2117968368 @default.
- W2117968368 hasPrimaryLocation W21179683681 @default.
- W2117968368 hasRelatedWork W2071312817 @default.
- W2117968368 hasRelatedWork W2075160739 @default.
- W2117968368 hasRelatedWork W2085931258 @default.
- W2117968368 hasRelatedWork W2117968368 @default.
- W2117968368 hasRelatedWork W2260417444 @default.
- W2117968368 hasRelatedWork W2588944788 @default.
- W2117968368 hasRelatedWork W2591699765 @default.
- W2117968368 hasRelatedWork W2963657328 @default.
- W2117968368 hasRelatedWork W2964140345 @default.
- W2117968368 hasRelatedWork W3177092685 @default.
- W2117968368 hasVolume "282" @default.
- W2117968368 isParatext "false" @default.
- W2117968368 isRetracted "false" @default.
- W2117968368 magId "2117968368" @default.
- W2117968368 workType "article" @default.