Matches in SemOpenAlex for { <https://semopenalex.org/work/W2118048178> ?p ?o ?g. }
- W2118048178 endingPage "126" @default.
- W2118048178 startingPage "108" @default.
- W2118048178 abstract "Summary 1. Inferring effects of environmental flows is difficult with standard statistical approaches because flow‐delivery programs are characterised by weak experimental design, and monitoring programs often have insufficient replication to detect ecologically significant effects. Bayesian hierarchical approaches may be more suited to the task, as they are more flexible and allow data from multiple non‐replicate sampling units (e.g. rivers) to be combined, increasing inferential strength. 2. We assessed the utility of Bayesian hierarchical models for detecting ecological effects of flow variation by conducting both hierarchical and non‐hierarchical analyses on two environmental endpoints. We analysed effects of discharge on salinity in the Wimmera and Glenelg rivers (Victoria, Australia) using a linear regression with autocorrelation terms, and on Australian smelt in the Thomson River (Victoria, Australia) using a multi‐level covariate model. These analyses test some of the hypotheses upon which environmental flow recommendations have been made for these rivers. 3. Discharge was correlated with reduced salinity at six of 10 sites, but with increased salinity at two others. The results were very similar for hierarchical and non‐hierarchical models. For Australian smelt, the hierarchical model found some evidence that excess summer discharge reduces abundance in all river reaches, but the non‐hierarchical model was able to detect this response in only one reach. 4. The results highlight the power and flexibility of Bayesian analysis. Neither of the models fitted would have been amenable to more widely used statistical approaches, and it is unlikely that we would have detected responses to flow variation in these data had we been using such techniques. Hierarchical models can greatly improve inferential strength in the data‐poor situations that are common in ecological monitoring, and will be able to be used to assess the effectiveness of environmental flow programs and maximise the benefits of large‐scale environmental flow monitoring programs." @default.
- W2118048178 created "2016-06-24" @default.
- W2118048178 creator A5020172828 @default.
- W2118048178 creator A5044735629 @default.
- W2118048178 creator A5082432121 @default.
- W2118048178 date "2009-12-15" @default.
- W2118048178 modified "2023-10-02" @default.
- W2118048178 title "Detecting ecological responses to flow variation using Bayesian hierarchical models" @default.
- W2118048178 cites W1517555081 @default.
- W2118048178 cites W1536497620 @default.
- W2118048178 cites W1543629089 @default.
- W2118048178 cites W156586770 @default.
- W2118048178 cites W1946738347 @default.
- W2118048178 cites W1985662290 @default.
- W2118048178 cites W1990208466 @default.
- W2118048178 cites W1991689711 @default.
- W2118048178 cites W1993897679 @default.
- W2118048178 cites W1996950224 @default.
- W2118048178 cites W2001167689 @default.
- W2118048178 cites W2005077824 @default.
- W2118048178 cites W2044432424 @default.
- W2118048178 cites W2054983159 @default.
- W2118048178 cites W2062247100 @default.
- W2118048178 cites W2072196447 @default.
- W2118048178 cites W2074597534 @default.
- W2118048178 cites W2084672468 @default.
- W2118048178 cites W2096113236 @default.
- W2118048178 cites W2105845017 @default.
- W2118048178 cites W2111418884 @default.
- W2118048178 cites W2150457759 @default.
- W2118048178 cites W2152139374 @default.
- W2118048178 cites W2158603916 @default.
- W2118048178 cites W2276212015 @default.
- W2118048178 cites W4249731213 @default.
- W2118048178 cites W4296396156 @default.
- W2118048178 cites W605132206 @default.
- W2118048178 cites W69679961 @default.
- W2118048178 doi "https://doi.org/10.1111/j.1365-2427.2009.02205.x" @default.
- W2118048178 hasPublicationYear "2009" @default.
- W2118048178 type Work @default.
- W2118048178 sameAs 2118048178 @default.
- W2118048178 citedByCount "72" @default.
- W2118048178 countsByYear W21180481782012 @default.
- W2118048178 countsByYear W21180481782013 @default.
- W2118048178 countsByYear W21180481782014 @default.
- W2118048178 countsByYear W21180481782015 @default.
- W2118048178 countsByYear W21180481782016 @default.
- W2118048178 countsByYear W21180481782017 @default.
- W2118048178 countsByYear W21180481782018 @default.
- W2118048178 countsByYear W21180481782019 @default.
- W2118048178 countsByYear W21180481782020 @default.
- W2118048178 countsByYear W21180481782021 @default.
- W2118048178 countsByYear W21180481782022 @default.
- W2118048178 countsByYear W21180481782023 @default.
- W2118048178 crossrefType "journal-article" @default.
- W2118048178 hasAuthorship W2118048178A5020172828 @default.
- W2118048178 hasAuthorship W2118048178A5044735629 @default.
- W2118048178 hasAuthorship W2118048178A5082432121 @default.
- W2118048178 hasConcept C105795698 @default.
- W2118048178 hasConcept C106131492 @default.
- W2118048178 hasConcept C107673813 @default.
- W2118048178 hasConcept C114289077 @default.
- W2118048178 hasConcept C119043178 @default.
- W2118048178 hasConcept C124101348 @default.
- W2118048178 hasConcept C126322002 @default.
- W2118048178 hasConcept C140779682 @default.
- W2118048178 hasConcept C144986985 @default.
- W2118048178 hasConcept C160234255 @default.
- W2118048178 hasConcept C168743327 @default.
- W2118048178 hasConcept C18903297 @default.
- W2118048178 hasConcept C191413810 @default.
- W2118048178 hasConcept C2781162219 @default.
- W2118048178 hasConcept C31972630 @default.
- W2118048178 hasConcept C33923547 @default.
- W2118048178 hasConcept C39432304 @default.
- W2118048178 hasConcept C41008148 @default.
- W2118048178 hasConcept C53059260 @default.
- W2118048178 hasConcept C71924100 @default.
- W2118048178 hasConcept C86803240 @default.
- W2118048178 hasConcept C95190672 @default.
- W2118048178 hasConcept C96608239 @default.
- W2118048178 hasConceptScore W2118048178C105795698 @default.
- W2118048178 hasConceptScore W2118048178C106131492 @default.
- W2118048178 hasConceptScore W2118048178C107673813 @default.
- W2118048178 hasConceptScore W2118048178C114289077 @default.
- W2118048178 hasConceptScore W2118048178C119043178 @default.
- W2118048178 hasConceptScore W2118048178C124101348 @default.
- W2118048178 hasConceptScore W2118048178C126322002 @default.
- W2118048178 hasConceptScore W2118048178C140779682 @default.
- W2118048178 hasConceptScore W2118048178C144986985 @default.
- W2118048178 hasConceptScore W2118048178C160234255 @default.
- W2118048178 hasConceptScore W2118048178C168743327 @default.
- W2118048178 hasConceptScore W2118048178C18903297 @default.
- W2118048178 hasConceptScore W2118048178C191413810 @default.
- W2118048178 hasConceptScore W2118048178C2781162219 @default.
- W2118048178 hasConceptScore W2118048178C31972630 @default.
- W2118048178 hasConceptScore W2118048178C33923547 @default.
- W2118048178 hasConceptScore W2118048178C39432304 @default.