Matches in SemOpenAlex for { <https://semopenalex.org/work/W2118074865> ?p ?o ?g. }
- W2118074865 endingPage "921" @default.
- W2118074865 startingPage "912" @default.
- W2118074865 abstract "We are in the era of abundant ‘big’ or ‘high-dimensional’ data. These data afford us the opportunity to discover predictors of an event of interest, and to estimate occurrence of the event based on values of these predictors. For example, ‘genome-wide association studies’ examine millions of single-nucleotide polymorphisms (SNPs), along with disease status. We can learn SNPs that affect disease status from these data sets, and use the knowledge learned to predict disease likelihood. Owing to the large number of features, it is difficult for many prediction methods to use all the features directly. The ReliefF algorithm ranks a set of features in terms of how well they predict a target. It can be used to identify good predictors, which can then be provided to a prediction method. We compared the performance of eight prediction methods when predicting binary outcomes using high-dimensional discrete data sets. We performed two-stage prediction, where ReliefF is used in the first stage to identify good predictors. Bayesian network (BN)-based methods performed best overall. Furthermore, ReliefF did not improve their performance. The BN-based methods use the Bayesian Dirichlet Equivalent Uniform score to evaluate candidate models, and use BN inference algorithms to perform prediction. This score and these algorithms were developed for discrete variables. This perhaps explains why they perform better in this domain. Many prediction methods are available, and researchers have little reason for choosing one over the other in the domain of binary prediction using high-dimensional data sets. Our results indicate that the best choices overall are BN-based methods." @default.
- W2118074865 created "2016-06-24" @default.
- W2118074865 creator A5039264502 @default.
- W2118074865 creator A5066888888 @default.
- W2118074865 date "2015-03-18" @default.
- W2118074865 modified "2023-10-16" @default.
- W2118074865 title "Evaluation of a two-stage framework for prediction using big genomic data" @default.
- W2118074865 cites W1500895378 @default.
- W2118074865 cites W1529106245 @default.
- W2118074865 cites W1817561967 @default.
- W2118074865 cites W1877160699 @default.
- W2118074865 cites W1966157852 @default.
- W2118074865 cites W1977000084 @default.
- W2118074865 cites W1980175560 @default.
- W2118074865 cites W1980452149 @default.
- W2118074865 cites W1980771638 @default.
- W2118074865 cites W1980991473 @default.
- W2118074865 cites W1986931325 @default.
- W2118074865 cites W1991993575 @default.
- W2118074865 cites W1998634450 @default.
- W2118074865 cites W2006423274 @default.
- W2118074865 cites W2008352401 @default.
- W2118074865 cites W2026475293 @default.
- W2118074865 cites W2032493846 @default.
- W2118074865 cites W2041170649 @default.
- W2118074865 cites W2047589330 @default.
- W2118074865 cites W2070082005 @default.
- W2118074865 cites W2076220518 @default.
- W2118074865 cites W2085739707 @default.
- W2118074865 cites W2093805274 @default.
- W2118074865 cites W2096804832 @default.
- W2118074865 cites W2098038934 @default.
- W2118074865 cites W2103551323 @default.
- W2118074865 cites W2104605543 @default.
- W2118074865 cites W2109353557 @default.
- W2118074865 cites W2111072639 @default.
- W2118074865 cites W2122189635 @default.
- W2118074865 cites W2128946284 @default.
- W2118074865 cites W2129961269 @default.
- W2118074865 cites W2131878646 @default.
- W2118074865 cites W2135106788 @default.
- W2118074865 cites W2140468511 @default.
- W2118074865 cites W2143426320 @default.
- W2118074865 cites W2148916924 @default.
- W2118074865 cites W2149512324 @default.
- W2118074865 cites W2152119060 @default.
- W2118074865 cites W2152905639 @default.
- W2118074865 cites W2154572047 @default.
- W2118074865 cites W2155781289 @default.
- W2118074865 cites W2161630867 @default.
- W2118074865 cites W2165654879 @default.
- W2118074865 cites W2169476035 @default.
- W2118074865 cites W220770808 @default.
- W2118074865 cites W2242514529 @default.
- W2118074865 cites W3214092816 @default.
- W2118074865 doi "https://doi.org/10.1093/bib/bbv010" @default.
- W2118074865 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4652616" @default.
- W2118074865 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25788325" @default.
- W2118074865 hasPublicationYear "2015" @default.
- W2118074865 type Work @default.
- W2118074865 sameAs 2118074865 @default.
- W2118074865 citedByCount "6" @default.
- W2118074865 countsByYear W21180748652017 @default.
- W2118074865 countsByYear W21180748652020 @default.
- W2118074865 countsByYear W21180748652021 @default.
- W2118074865 countsByYear W21180748652022 @default.
- W2118074865 crossrefType "journal-article" @default.
- W2118074865 hasAuthorship W2118074865A5039264502 @default.
- W2118074865 hasAuthorship W2118074865A5066888888 @default.
- W2118074865 hasBestOaLocation W21180748651 @default.
- W2118074865 hasConcept C107673813 @default.
- W2118074865 hasConcept C119857082 @default.
- W2118074865 hasConcept C12267149 @default.
- W2118074865 hasConcept C124101348 @default.
- W2118074865 hasConcept C154945302 @default.
- W2118074865 hasConcept C177264268 @default.
- W2118074865 hasConcept C199360897 @default.
- W2118074865 hasConcept C2776214188 @default.
- W2118074865 hasConcept C41008148 @default.
- W2118074865 hasConcept C45804977 @default.
- W2118074865 hasConcept C58489278 @default.
- W2118074865 hasConcept C66905080 @default.
- W2118074865 hasConceptScore W2118074865C107673813 @default.
- W2118074865 hasConceptScore W2118074865C119857082 @default.
- W2118074865 hasConceptScore W2118074865C12267149 @default.
- W2118074865 hasConceptScore W2118074865C124101348 @default.
- W2118074865 hasConceptScore W2118074865C154945302 @default.
- W2118074865 hasConceptScore W2118074865C177264268 @default.
- W2118074865 hasConceptScore W2118074865C199360897 @default.
- W2118074865 hasConceptScore W2118074865C2776214188 @default.
- W2118074865 hasConceptScore W2118074865C41008148 @default.
- W2118074865 hasConceptScore W2118074865C45804977 @default.
- W2118074865 hasConceptScore W2118074865C58489278 @default.
- W2118074865 hasConceptScore W2118074865C66905080 @default.
- W2118074865 hasIssue "6" @default.
- W2118074865 hasLocation W21180748651 @default.
- W2118074865 hasLocation W21180748652 @default.
- W2118074865 hasLocation W21180748653 @default.