Matches in SemOpenAlex for { <https://semopenalex.org/work/W2118266217> ?p ?o ?g. }
- W2118266217 endingPage "179" @default.
- W2118266217 startingPage "150" @default.
- W2118266217 abstract "When estimating spatial regression models by maximum likelihood using spatial weights matrices to represent spatial processes, computing the Jacobian, ln(|I − λW|), remains a central problem. In principle, and for smaller data sets, the use of the eigenvalues of the spatial weights matrix provides a very rapid resolution. Analytical eigenvalues are available for large regular grids. For larger problems not on regular grids, including those induced in spatial panel and dyadic (network) problems, solving the eigenproblem may not be feasible, and a number of alternatives have been proposed. This article surveys selected alternatives, and comments on their relative usefulness, covering sparse Cholesky and sparse LU factorizations, and approximations such as Monte Carlo, Chebyshev, and using lower-order moments with interpolation. The results are presented in terms of component-wise differences between sets of Jacobians for selected data sets. In conclusion, recommendations are made for a number of analytical settings. Al estimar modelos de regresión espacial con el método del máxima verosimilitud (máximum likelihood) y usando matrices de pesos espaciales para representar procesos espaciales, cálculo del término jacobiano (jabobian)—ln(|I−λW|)- sigue siendo un problema central. En principio, y para bases de datos más pequeñas, el uso de los valores propios (eigenvalues) de la matriz de pesos espaciales proporciona una solución muy rápida. Los eigenvalues analíticos para retículas o grillas grandes y regulares son ya conocidos. Para problemas más grandes, que no se presentan en mallas regulares -incluyendo aquellos que se inducen en problemas de paneles espaciales y en problemas de (redes) diádicas-, es posible que resolver el eigenproblem no sea posible. Este artículo estudia una selección de alternativas y comenta acerca de su relativa utilidad. Se cubren las facorizaciones de tipo Cholesky disperso (sparse Cholesky) y de tipo LU dispersas (sparse LU), las aproximaciones Monte Carlo, y Chebyshev, así mismo se utiliza momentos de bajo-orden (lower-order) con interpolación. Los resultados se presentan en términos de diferencias de componentes entre sets de términos jacobianos para bases de datos seleccionadas. En conclusión, se hacen recomendaciones para una serie de contextos analíticos. 当采用表征空间过程的空间权重矩阵对空间回归模型进行最大似然估计时,雅可比矩阵ln(|I−λW|)的计算仍是核心问题。对于小数据集,原则上可利用空间权重矩阵的特征值提供一种快速的解决方案,对于大型规则格网数据特征值分析同样有效。但对于不规则格网大型问题,包括从空间面板和二元(网络)问题中引伸的问题,利用特征值的解决方案可能不适用,对此学术界提出了多种可选替代方案。本文选取已有的几种替代方案并评论各自的相对有效性,其中包括稀疏Cholesky分解和稀疏LU分解法,Monte Carlo和 Chebyshev近似模拟法以及低阶矩插值法。结果以所选数据集雅可比矩阵间特定组份的差异方式显示。最后,推荐了一些分析设定。" @default.
- W2118266217 created "2016-06-24" @default.
- W2118266217 creator A5015666196 @default.
- W2118266217 creator A5040968179 @default.
- W2118266217 creator A5067718472 @default.
- W2118266217 date "2013-04-01" @default.
- W2118266217 modified "2023-09-27" @default.
- W2118266217 title "Computing the Jacobian in Gaussian Spatial Autoregressive Models: An Illustrated Comparison of Available Methods" @default.
- W2118266217 cites W110918106 @default.
- W2118266217 cites W1506690472 @default.
- W2118266217 cites W1520511539 @default.
- W2118266217 cites W1951294597 @default.
- W2118266217 cites W1964160914 @default.
- W2118266217 cites W1968099699 @default.
- W2118266217 cites W1981145803 @default.
- W2118266217 cites W1981462132 @default.
- W2118266217 cites W1985726068 @default.
- W2118266217 cites W1991085742 @default.
- W2118266217 cites W2001501041 @default.
- W2118266217 cites W2008389020 @default.
- W2118266217 cites W2019405479 @default.
- W2118266217 cites W2020804487 @default.
- W2118266217 cites W2023320048 @default.
- W2118266217 cites W2041900796 @default.
- W2118266217 cites W2046332585 @default.
- W2118266217 cites W2046714450 @default.
- W2118266217 cites W2049064539 @default.
- W2118266217 cites W2050448951 @default.
- W2118266217 cites W2055873999 @default.
- W2118266217 cites W2083087416 @default.
- W2118266217 cites W2094329897 @default.
- W2118266217 cites W2094940556 @default.
- W2118266217 cites W2102802796 @default.
- W2118266217 cites W2121763453 @default.
- W2118266217 cites W2140648871 @default.
- W2118266217 cites W2146976706 @default.
- W2118266217 cites W2147330627 @default.
- W2118266217 cites W2152381309 @default.
- W2118266217 cites W2153500369 @default.
- W2118266217 cites W2167943787 @default.
- W2118266217 cites W2494084875 @default.
- W2118266217 cites W3121675824 @default.
- W2118266217 cites W4229666556 @default.
- W2118266217 cites W4239569515 @default.
- W2118266217 cites W4240790602 @default.
- W2118266217 cites W4242984692 @default.
- W2118266217 cites W4244427943 @default.
- W2118266217 cites W4301651410 @default.
- W2118266217 doi "https://doi.org/10.1111/gean.12008" @default.
- W2118266217 hasPublicationYear "2013" @default.
- W2118266217 type Work @default.
- W2118266217 sameAs 2118266217 @default.
- W2118266217 citedByCount "294" @default.
- W2118266217 countsByYear W21182662172013 @default.
- W2118266217 countsByYear W21182662172014 @default.
- W2118266217 countsByYear W21182662172015 @default.
- W2118266217 countsByYear W21182662172016 @default.
- W2118266217 countsByYear W21182662172017 @default.
- W2118266217 countsByYear W21182662172018 @default.
- W2118266217 countsByYear W21182662172019 @default.
- W2118266217 countsByYear W21182662172020 @default.
- W2118266217 countsByYear W21182662172021 @default.
- W2118266217 countsByYear W21182662172022 @default.
- W2118266217 countsByYear W21182662172023 @default.
- W2118266217 crossrefType "journal-article" @default.
- W2118266217 hasAuthorship W2118266217A5015666196 @default.
- W2118266217 hasAuthorship W2118266217A5040968179 @default.
- W2118266217 hasAuthorship W2118266217A5067718472 @default.
- W2118266217 hasConcept C114614502 @default.
- W2118266217 hasConcept C121332964 @default.
- W2118266217 hasConcept C158693339 @default.
- W2118266217 hasConcept C163716315 @default.
- W2118266217 hasConcept C200331156 @default.
- W2118266217 hasConcept C28826006 @default.
- W2118266217 hasConcept C33923547 @default.
- W2118266217 hasConcept C62520636 @default.
- W2118266217 hasConceptScore W2118266217C114614502 @default.
- W2118266217 hasConceptScore W2118266217C121332964 @default.
- W2118266217 hasConceptScore W2118266217C158693339 @default.
- W2118266217 hasConceptScore W2118266217C163716315 @default.
- W2118266217 hasConceptScore W2118266217C200331156 @default.
- W2118266217 hasConceptScore W2118266217C28826006 @default.
- W2118266217 hasConceptScore W2118266217C33923547 @default.
- W2118266217 hasConceptScore W2118266217C62520636 @default.
- W2118266217 hasIssue "2" @default.
- W2118266217 hasLocation W21182662171 @default.
- W2118266217 hasOpenAccess W2118266217 @default.
- W2118266217 hasPrimaryLocation W21182662171 @default.
- W2118266217 hasRelatedWork W1978042415 @default.
- W2118266217 hasRelatedWork W1981288105 @default.
- W2118266217 hasRelatedWork W1988299030 @default.
- W2118266217 hasRelatedWork W2011742510 @default.
- W2118266217 hasRelatedWork W2017331178 @default.
- W2118266217 hasRelatedWork W2036004882 @default.
- W2118266217 hasRelatedWork W2073802676 @default.
- W2118266217 hasRelatedWork W2989773437 @default.
- W2118266217 hasRelatedWork W3086542228 @default.
- W2118266217 hasRelatedWork W3196741607 @default.