Matches in SemOpenAlex for { <https://semopenalex.org/work/W2118308981> ?p ?o ?g. }
- W2118308981 endingPage "4715" @default.
- W2118308981 startingPage "4711" @default.
- W2118308981 abstract "Multiferroic composite materials consisting of both a magnetic phase and a ferroelectric phase are of great current interest, as they offer the possibility ofmagnetoelectric (ME) coupling, that is, electric field manipulation of magnetic properties (converse ME effect) or vice versa (direct ME effect), and have led to many novel multiferroic devices. One important series of such multiferroic devices is constituted by electrostatically tunable microwave multiferroic signal processing devices, including tunable resonators, phase shifters, and tunable filters. Compared to conventional tunable microwave magnetic devices, which are tuned by magnetic fields, these electrostatically tunable microwave multiferroic devices are much more energy efficient, less noisy, compact, and lightweight. ME effects can be realized in multiferroic composites through a strain/stress-mediated interaction, which enables effective energy transfer between electric and magnetic fields and leads to important new functionalities and devices. Strong ME coupling is critical for multiferroic devices; however, it has been difficult to achieve at microwave frequencies, leading to a very limited tunability in electrostatically tunable microwave multiferroic devices. The demonstrated tunable range of most of these devices has been very limited, with a frequency tunability of Df< 150MHz and a low tunable magnetic field of DH< 50Oe (1 Oe 79.6 A m ). This is mainly due to the large loss tangents at microwave frequencies of the two constituent phases, that is, the ferroelectric phase and, particularly, the magnetic phase, which is less resistive. The ME coupling strength in multiferroic composites is determined by many factors, such as the properties of the two constituent phases, the interface between them, the mode of ME coupling, and the orientation of the magnetic and electric fields. As a result, layered multiferroic heterostructures with magnetic thin films provide great opportunities for achieving strong ME coupling at microwave frequencies, owing to minimized charge leakage paths and low loss tangents associated with magnetic thin films. It is also desirable for the magnetic phase in the multiferroic composites to have a narrow ferromagnetic resonance (FMR) linewidth and a large piezomagnetic coefficient (dl/dH), that is, a large saturation magnetostriction constant (ls) and a low saturation magnetic field (Hs). However, suchmagnetic materials have not been readily available. Very recently, we have reported a new class of metallic magnetic FeGaB films that has a high ls of ca. 70 ppm, a lowHs of ca. 20Oe, and a narrow FMR linewidth of ca. 16Oe at X-band (ca. 9.6GHz). The maximum piezomagnetic coefficient of the FeGaB films is about 7 ppm Oe , which is much higher than those of other well-known magnetostrictive materials used in multiferroic composites, such as Terfenol-D (Tb-Dy-Fe), Galfenol (Fe-Ga), and Metglas (FeBSiC), as shown in Figure 1. The combination of narrow FMR linewidth and high piezomagnetic coefficient makes these FeGaB films excellent candidates for the magnetic material in microwave multiferroic composites. Single-crystal ferroelectrics such as lead magnesium niobate–lead titanate (PMN-PT) and lead zinc niobate–lead titanate (PZN-PT) having giant piezoelectric coefficients and low loss tangents are desired for microwave multiferroic composites as well. In particular, (011)-cut PMN-PT and PZN-PT single-crystal slabs have anisotropic piezoelectric coefficients d31 and d32 when poled along their [011] crystalline direction. For example, (011)-cut PZN-PT single crystals with 6% lead titanate have high anisotropic piezoelectric coefficients d311⁄4 3000 pC N 1 and d321⁄4 1100 pC N . The giant anisotropic piezoelectric coefficients of the PZN-PTsingle crystal provide great opportunities for generating a large in-plane magnetic anisotropic field and" @default.
- W2118308981 created "2016-06-24" @default.
- W2118308981 creator A5021154686 @default.
- W2118308981 creator A5021715241 @default.
- W2118308981 creator A5054626174 @default.
- W2118308981 creator A5066202277 @default.
- W2118308981 creator A5091529699 @default.
- W2118308981 date "2009-08-05" @default.
- W2118308981 modified "2023-10-17" @default.
- W2118308981 title "Giant Electric Field Tuning of Magnetism in Novel Multiferroic FeGaB/Lead Zinc Niobate-Lead Titanate (PZN-PT) Heterostructures" @default.
- W2118308981 cites W1575492558 @default.
- W2118308981 cites W1604516970 @default.
- W2118308981 cites W1608463992 @default.
- W2118308981 cites W1965340197 @default.
- W2118308981 cites W1966017138 @default.
- W2118308981 cites W1967880973 @default.
- W2118308981 cites W1980585775 @default.
- W2118308981 cites W1984296562 @default.
- W2118308981 cites W2000088929 @default.
- W2118308981 cites W2024360387 @default.
- W2118308981 cites W2027163423 @default.
- W2118308981 cites W2029382782 @default.
- W2118308981 cites W2040027486 @default.
- W2118308981 cites W2048518241 @default.
- W2118308981 cites W2051817823 @default.
- W2118308981 cites W2071606995 @default.
- W2118308981 cites W2086627436 @default.
- W2118308981 cites W2094083095 @default.
- W2118308981 cites W2124066315 @default.
- W2118308981 cites W2134310145 @default.
- W2118308981 cites W2139227642 @default.
- W2118308981 cites W2146084604 @default.
- W2118308981 cites W4251470062 @default.
- W2118308981 doi "https://doi.org/10.1002/adma.200901131" @default.
- W2118308981 hasPublicationYear "2009" @default.
- W2118308981 type Work @default.
- W2118308981 sameAs 2118308981 @default.
- W2118308981 citedByCount "269" @default.
- W2118308981 countsByYear W21183089812012 @default.
- W2118308981 countsByYear W21183089812013 @default.
- W2118308981 countsByYear W21183089812014 @default.
- W2118308981 countsByYear W21183089812015 @default.
- W2118308981 countsByYear W21183089812016 @default.
- W2118308981 countsByYear W21183089812017 @default.
- W2118308981 countsByYear W21183089812018 @default.
- W2118308981 countsByYear W21183089812019 @default.
- W2118308981 countsByYear W21183089812020 @default.
- W2118308981 countsByYear W21183089812021 @default.
- W2118308981 countsByYear W21183089812022 @default.
- W2118308981 countsByYear W21183089812023 @default.
- W2118308981 crossrefType "journal-article" @default.
- W2118308981 hasAuthorship W2118308981A5021154686 @default.
- W2118308981 hasAuthorship W2118308981A5021715241 @default.
- W2118308981 hasAuthorship W2118308981A5054626174 @default.
- W2118308981 hasAuthorship W2118308981A5066202277 @default.
- W2118308981 hasAuthorship W2118308981A5091529699 @default.
- W2118308981 hasConcept C114793014 @default.
- W2118308981 hasConcept C121332964 @default.
- W2118308981 hasConcept C123266903 @default.
- W2118308981 hasConcept C127313418 @default.
- W2118308981 hasConcept C133386390 @default.
- W2118308981 hasConcept C134132462 @default.
- W2118308981 hasConcept C191897082 @default.
- W2118308981 hasConcept C192562407 @default.
- W2118308981 hasConcept C197162081 @default.
- W2118308981 hasConcept C26873012 @default.
- W2118308981 hasConcept C2777093003 @default.
- W2118308981 hasConcept C2779000267 @default.
- W2118308981 hasConcept C2780856220 @default.
- W2118308981 hasConcept C49040817 @default.
- W2118308981 hasConcept C60799052 @default.
- W2118308981 hasConcept C62520636 @default.
- W2118308981 hasConcept C79090758 @default.
- W2118308981 hasConcept C79794668 @default.
- W2118308981 hasConceptScore W2118308981C114793014 @default.
- W2118308981 hasConceptScore W2118308981C121332964 @default.
- W2118308981 hasConceptScore W2118308981C123266903 @default.
- W2118308981 hasConceptScore W2118308981C127313418 @default.
- W2118308981 hasConceptScore W2118308981C133386390 @default.
- W2118308981 hasConceptScore W2118308981C134132462 @default.
- W2118308981 hasConceptScore W2118308981C191897082 @default.
- W2118308981 hasConceptScore W2118308981C192562407 @default.
- W2118308981 hasConceptScore W2118308981C197162081 @default.
- W2118308981 hasConceptScore W2118308981C26873012 @default.
- W2118308981 hasConceptScore W2118308981C2777093003 @default.
- W2118308981 hasConceptScore W2118308981C2779000267 @default.
- W2118308981 hasConceptScore W2118308981C2780856220 @default.
- W2118308981 hasConceptScore W2118308981C49040817 @default.
- W2118308981 hasConceptScore W2118308981C60799052 @default.
- W2118308981 hasConceptScore W2118308981C62520636 @default.
- W2118308981 hasConceptScore W2118308981C79090758 @default.
- W2118308981 hasConceptScore W2118308981C79794668 @default.
- W2118308981 hasIssue "46" @default.
- W2118308981 hasLocation W21183089811 @default.
- W2118308981 hasOpenAccess W2118308981 @default.
- W2118308981 hasPrimaryLocation W21183089811 @default.
- W2118308981 hasRelatedWork W1595030435 @default.
- W2118308981 hasRelatedWork W1973122494 @default.