Matches in SemOpenAlex for { <https://semopenalex.org/work/W2118404260> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2118404260 endingPage "25" @default.
- W2118404260 startingPage "20" @default.
- W2118404260 abstract "With the rapid development of Internet, e-mail has become effective means of communication to share information. Through e-mail, we can send text messages, images, audio and video clips across the world within a fraction of time. In recent years, e-mail users are facing problem due to spam e-mails. Spam e-mails are unsolicited commercial/bulk e-mails sent by spammers. There are many serious problems associated with spam e-mails, e.g. it may contain hyperlink which may lead to a bogus website which might ask you for your personal information like username, password, bank account number etc.. Spam e-mail is not only wastage of storage space but also wastage of time. In order to tackle problems faced by users due to spam e-mail, it is necessary to classify them with the help of intelligent and robust classifier. These classifiers should have the capability to classify spam e-mail against non-spam e-mail. The spam e-mail classifier performance can be greatly enhanced with the use of artificial neural network classification algorithm. An Artificial Neural Network (ANN) is a powerful tool used for classification of data , it has capability of learning huge amount of data with high dimensionality in better way, there are various parameters of ANN to be set to tune for the better performance of neural network model, these are learning rate, architecture of ANN and momentum, these all parameters play a very important role in improving the accuracy of ANN model. In this paper Error Back Propagation Network (EBPN) techniques based on ANN are explored with different value of learning rate from 0.2 to 0.9. An EBPN model is derived from e-mail data set obtained from UCI repository site with three different partitions. Due to high dimensionality of data set, we have applied feature selection technique for the best model. This model is tested with various combinations of feature and it is concluded that model is producing highest accuracy of 98.49% on testing samples with 52 features. The derived model is also measured with precision, recall and F-measure and achieved 98.34%, 99.07% and 98.70% respectively." @default.
- W2118404260 created "2016-06-24" @default.
- W2118404260 creator A5023200879 @default.
- W2118404260 creator A5029744114 @default.
- W2118404260 creator A5058270961 @default.
- W2118404260 date "2013-04-18" @default.
- W2118404260 modified "2023-10-02" @default.
- W2118404260 title "Tuned Artificial Neural Network Model for E-mail Data Classification with Feature Selection" @default.
- W2118404260 cites W1995450125 @default.
- W2118404260 cites W2023917709 @default.
- W2118404260 cites W2065701527 @default.
- W2118404260 cites W2084812512 @default.
- W2118404260 cites W2140190241 @default.
- W2118404260 cites W2168807180 @default.
- W2118404260 cites W2185177373 @default.
- W2118404260 doi "https://doi.org/10.5120/11744-7322" @default.
- W2118404260 hasPublicationYear "2013" @default.
- W2118404260 type Work @default.
- W2118404260 sameAs 2118404260 @default.
- W2118404260 citedByCount "2" @default.
- W2118404260 countsByYear W21184042602015 @default.
- W2118404260 countsByYear W21184042602016 @default.
- W2118404260 crossrefType "journal-article" @default.
- W2118404260 hasAuthorship W2118404260A5023200879 @default.
- W2118404260 hasAuthorship W2118404260A5029744114 @default.
- W2118404260 hasAuthorship W2118404260A5058270961 @default.
- W2118404260 hasBestOaLocation W21184042601 @default.
- W2118404260 hasConcept C119857082 @default.
- W2118404260 hasConcept C124101348 @default.
- W2118404260 hasConcept C138885662 @default.
- W2118404260 hasConcept C148483581 @default.
- W2118404260 hasConcept C153180895 @default.
- W2118404260 hasConcept C154945302 @default.
- W2118404260 hasConcept C2776401178 @default.
- W2118404260 hasConcept C41008148 @default.
- W2118404260 hasConcept C41895202 @default.
- W2118404260 hasConcept C50644808 @default.
- W2118404260 hasConcept C81917197 @default.
- W2118404260 hasConceptScore W2118404260C119857082 @default.
- W2118404260 hasConceptScore W2118404260C124101348 @default.
- W2118404260 hasConceptScore W2118404260C138885662 @default.
- W2118404260 hasConceptScore W2118404260C148483581 @default.
- W2118404260 hasConceptScore W2118404260C153180895 @default.
- W2118404260 hasConceptScore W2118404260C154945302 @default.
- W2118404260 hasConceptScore W2118404260C2776401178 @default.
- W2118404260 hasConceptScore W2118404260C41008148 @default.
- W2118404260 hasConceptScore W2118404260C41895202 @default.
- W2118404260 hasConceptScore W2118404260C50644808 @default.
- W2118404260 hasConceptScore W2118404260C81917197 @default.
- W2118404260 hasIssue "25" @default.
- W2118404260 hasLocation W21184042601 @default.
- W2118404260 hasLocation W21184042602 @default.
- W2118404260 hasOpenAccess W2118404260 @default.
- W2118404260 hasPrimaryLocation W21184042601 @default.
- W2118404260 hasRelatedWork W2159220931 @default.
- W2118404260 hasRelatedWork W2374344280 @default.
- W2118404260 hasRelatedWork W3174196512 @default.
- W2118404260 hasRelatedWork W3200179079 @default.
- W2118404260 hasRelatedWork W3210877509 @default.
- W2118404260 hasRelatedWork W4212852473 @default.
- W2118404260 hasRelatedWork W4225360065 @default.
- W2118404260 hasRelatedWork W4307883119 @default.
- W2118404260 hasRelatedWork W1629725936 @default.
- W2118404260 hasRelatedWork W2345184372 @default.
- W2118404260 hasVolume "67" @default.
- W2118404260 isParatext "false" @default.
- W2118404260 isRetracted "false" @default.
- W2118404260 magId "2118404260" @default.
- W2118404260 workType "article" @default.