Matches in SemOpenAlex for { <https://semopenalex.org/work/W2118804920> ?p ?o ?g. }
- W2118804920 endingPage "207" @default.
- W2118804920 startingPage "207" @default.
- W2118804920 abstract "The nonlinear Schroedinger equation is studied for a periodic sequence of delta-potentials (a delta-comb) or narrow Gaussian potentials. For the delta-comb the time-independent nonlinear Schroedinger equation can be solved analytically in terms of Jacobi elliptic functions and thus provides useful insight into the features of nonlinear stationary states of periodic potentials. Phenomena well-known from classical chaos are found, such as a bifurcation of periodic stationary states and a transition to spatial chaos. The relation of new features of nonlinear Bloch bands, such as looped and period doubled bands, are analyzed in detail. An analytic expression for the critical nonlinearity for the emergence of looped bands is derived. The results for the delta-comb are generalized to a more realistic potential consisting of a periodic sequence of narrow Gaussian peaks and the dynamical stability of periodic solutions in a Gaussian comb is discussed." @default.
- W2118804920 created "2016-06-24" @default.
- W2118804920 creator A5035017286 @default.
- W2118804920 creator A5056553500 @default.
- W2118804920 creator A5082560876 @default.
- W2118804920 date "2021-01-01" @default.
- W2118804920 modified "2023-09-30" @default.
- W2118804920 title "The Nonlinear Schrödinger Equation for the Delta-Comb Potential: Quasi-Classical Chaos and Bifurcations of Periodic Stationary Solutions" @default.
- W2118804920 cites W1665371518 @default.
- W2118804920 cites W1968048152 @default.
- W2118804920 cites W1978501273 @default.
- W2118804920 cites W1979900604 @default.
- W2118804920 cites W1985478960 @default.
- W2118804920 cites W1986685864 @default.
- W2118804920 cites W1990941470 @default.
- W2118804920 cites W1992687944 @default.
- W2118804920 cites W1992725823 @default.
- W2118804920 cites W1996500988 @default.
- W2118804920 cites W1999535284 @default.
- W2118804920 cites W1999794248 @default.
- W2118804920 cites W2007790339 @default.
- W2118804920 cites W2016468626 @default.
- W2118804920 cites W2016701063 @default.
- W2118804920 cites W2019062653 @default.
- W2118804920 cites W2020349176 @default.
- W2118804920 cites W2021346022 @default.
- W2118804920 cites W2023819779 @default.
- W2118804920 cites W2024648387 @default.
- W2118804920 cites W2031053132 @default.
- W2118804920 cites W2035851752 @default.
- W2118804920 cites W2038605732 @default.
- W2118804920 cites W2040526811 @default.
- W2118804920 cites W2041765423 @default.
- W2118804920 cites W2042608342 @default.
- W2118804920 cites W2053401320 @default.
- W2118804920 cites W2053701235 @default.
- W2118804920 cites W2063045829 @default.
- W2118804920 cites W2065007284 @default.
- W2118804920 cites W2066442887 @default.
- W2118804920 cites W2081113211 @default.
- W2118804920 cites W2081857098 @default.
- W2118804920 cites W2084150268 @default.
- W2118804920 cites W2089333618 @default.
- W2118804920 cites W2089620501 @default.
- W2118804920 cites W2098286193 @default.
- W2118804920 cites W2104490280 @default.
- W2118804920 cites W2107550846 @default.
- W2118804920 cites W2109324693 @default.
- W2118804920 cites W2121254344 @default.
- W2118804920 cites W2125587613 @default.
- W2118804920 cites W2136577058 @default.
- W2118804920 cites W2140846764 @default.
- W2118804920 cites W2155697422 @default.
- W2118804920 cites W2160163816 @default.
- W2118804920 cites W2166783570 @default.
- W2118804920 cites W2168499099 @default.
- W2118804920 cites W2168899295 @default.
- W2118804920 cites W2963388978 @default.
- W2118804920 cites W3099039659 @default.
- W2118804920 cites W3103065173 @default.
- W2118804920 cites W3103858332 @default.
- W2118804920 cites W3105464143 @default.
- W2118804920 cites W3105634185 @default.
- W2118804920 cites W3124670341 @default.
- W2118804920 cites W4212977386 @default.
- W2118804920 cites W4240202039 @default.
- W2118804920 cites W4256227112 @default.
- W2118804920 doi "https://doi.org/10.1142/s1402925109000145" @default.
- W2118804920 hasPublicationYear "2021" @default.
- W2118804920 type Work @default.
- W2118804920 sameAs 2118804920 @default.
- W2118804920 citedByCount "20" @default.
- W2118804920 countsByYear W21188049202012 @default.
- W2118804920 countsByYear W21188049202013 @default.
- W2118804920 countsByYear W21188049202014 @default.
- W2118804920 countsByYear W21188049202015 @default.
- W2118804920 countsByYear W21188049202017 @default.
- W2118804920 countsByYear W21188049202018 @default.
- W2118804920 countsByYear W21188049202019 @default.
- W2118804920 countsByYear W21188049202020 @default.
- W2118804920 countsByYear W21188049202023 @default.
- W2118804920 crossrefType "journal-article" @default.
- W2118804920 hasAuthorship W2118804920A5035017286 @default.
- W2118804920 hasAuthorship W2118804920A5056553500 @default.
- W2118804920 hasAuthorship W2118804920A5082560876 @default.
- W2118804920 hasBestOaLocation W21188049202 @default.
- W2118804920 hasConcept C121332964 @default.
- W2118804920 hasConcept C121864883 @default.
- W2118804920 hasConcept C134306372 @default.
- W2118804920 hasConcept C158622935 @default.
- W2118804920 hasConcept C163716315 @default.
- W2118804920 hasConcept C2778112365 @default.
- W2118804920 hasConcept C2779374083 @default.
- W2118804920 hasConcept C2781349735 @default.
- W2118804920 hasConcept C33923547 @default.
- W2118804920 hasConcept C37914503 @default.
- W2118804920 hasConcept C38652104 @default.
- W2118804920 hasConcept C41008148 @default.