Matches in SemOpenAlex for { <https://semopenalex.org/work/W2118887788> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2118887788 endingPage "1350046" @default.
- W2118887788 startingPage "1350046" @default.
- W2118887788 abstract "This paper presents a new non-invasive approach to predict the status of high total cholesterol (TC) level in blood using bioimpedance and the artificial neural network (ANN) techniques. The input parameters for the ANN model are acquired from a non-invasive bioelectrical impedance analysis (BIA) measurement technique. The measurement data were obtained from 260 volunteered participants. A total of 190 subject's data were used for the ANN training purpose and the remaining 70 subject's data were used for model testing. Six parameters from the BIA parameters were found to be significant predictors for TC level in blood using logistic regression analysis. The six input predictors for the ANN modeling are age, body mass index (BMI), body capacitance, basal metabolic rate, extracellular mass and lean body mass. Four ANN techniques such as the gradient descent with momentum, the resilient, the scaled conjugate gradient and the Levenberg–Marquardt were used and compared for predicting the high TC level in the blood. The finding showed that the resilient method was the best model with prediction accuracy, sensitivity, specificity and area under the curve value obtained from the test data were 82.9%, 85.4%, 79.3% and 0.83%, respectively." @default.
- W2118887788 created "2016-06-24" @default.
- W2118887788 creator A5047534733 @default.
- W2118887788 creator A5062242614 @default.
- W2118887788 creator A5073733053 @default.
- W2118887788 date "2013-12-01" @default.
- W2118887788 modified "2023-10-16" @default.
- W2118887788 title "NON-INVASIVE APPROACH TO PREDICT THE CHOLESTEROL LEVEL IN BLOOD USING BIOIMPEDANCE AND NEURAL NETWORK TECHNIQUES" @default.
- W2118887788 cites W1758691327 @default.
- W2118887788 cites W1968108404 @default.
- W2118887788 cites W1979149339 @default.
- W2118887788 cites W1979370910 @default.
- W2118887788 cites W1989687103 @default.
- W2118887788 cites W1999743549 @default.
- W2118887788 cites W2004220862 @default.
- W2118887788 cites W2005453967 @default.
- W2118887788 cites W2038504062 @default.
- W2118887788 cites W2051812123 @default.
- W2118887788 cites W2052234900 @default.
- W2118887788 cites W2055533591 @default.
- W2118887788 cites W2076925729 @default.
- W2118887788 cites W2078386281 @default.
- W2118887788 cites W2095146682 @default.
- W2118887788 cites W2100540940 @default.
- W2118887788 cites W2102063342 @default.
- W2118887788 cites W2102962027 @default.
- W2118887788 cites W2110713453 @default.
- W2118887788 cites W2121394390 @default.
- W2118887788 cites W2129925362 @default.
- W2118887788 cites W2138988968 @default.
- W2118887788 cites W2157825442 @default.
- W2118887788 cites W2166735600 @default.
- W2118887788 cites W2323202746 @default.
- W2118887788 cites W4248522613 @default.
- W2118887788 doi "https://doi.org/10.4015/s1016237213500464" @default.
- W2118887788 hasPublicationYear "2013" @default.
- W2118887788 type Work @default.
- W2118887788 sameAs 2118887788 @default.
- W2118887788 citedByCount "5" @default.
- W2118887788 countsByYear W21188877882017 @default.
- W2118887788 countsByYear W21188877882021 @default.
- W2118887788 countsByYear W21188877882022 @default.
- W2118887788 countsByYear W21188877882023 @default.
- W2118887788 crossrefType "journal-article" @default.
- W2118887788 hasAuthorship W2118887788A5047534733 @default.
- W2118887788 hasAuthorship W2118887788A5062242614 @default.
- W2118887788 hasAuthorship W2118887788A5073733053 @default.
- W2118887788 hasConcept C105795698 @default.
- W2118887788 hasConcept C120863210 @default.
- W2118887788 hasConcept C126322002 @default.
- W2118887788 hasConcept C147583825 @default.
- W2118887788 hasConcept C151956035 @default.
- W2118887788 hasConcept C153180895 @default.
- W2118887788 hasConcept C153258448 @default.
- W2118887788 hasConcept C154945302 @default.
- W2118887788 hasConcept C2780221984 @default.
- W2118887788 hasConcept C33872192 @default.
- W2118887788 hasConcept C33923547 @default.
- W2118887788 hasConcept C41008148 @default.
- W2118887788 hasConcept C50644808 @default.
- W2118887788 hasConcept C71924100 @default.
- W2118887788 hasConceptScore W2118887788C105795698 @default.
- W2118887788 hasConceptScore W2118887788C120863210 @default.
- W2118887788 hasConceptScore W2118887788C126322002 @default.
- W2118887788 hasConceptScore W2118887788C147583825 @default.
- W2118887788 hasConceptScore W2118887788C151956035 @default.
- W2118887788 hasConceptScore W2118887788C153180895 @default.
- W2118887788 hasConceptScore W2118887788C153258448 @default.
- W2118887788 hasConceptScore W2118887788C154945302 @default.
- W2118887788 hasConceptScore W2118887788C2780221984 @default.
- W2118887788 hasConceptScore W2118887788C33872192 @default.
- W2118887788 hasConceptScore W2118887788C33923547 @default.
- W2118887788 hasConceptScore W2118887788C41008148 @default.
- W2118887788 hasConceptScore W2118887788C50644808 @default.
- W2118887788 hasConceptScore W2118887788C71924100 @default.
- W2118887788 hasIssue "06" @default.
- W2118887788 hasLocation W21188877881 @default.
- W2118887788 hasOpenAccess W2118887788 @default.
- W2118887788 hasPrimaryLocation W21188877881 @default.
- W2118887788 hasRelatedWork W1562391656 @default.
- W2118887788 hasRelatedWork W1574269787 @default.
- W2118887788 hasRelatedWork W1972897865 @default.
- W2118887788 hasRelatedWork W2020702053 @default.
- W2118887788 hasRelatedWork W2121993889 @default.
- W2118887788 hasRelatedWork W2130621134 @default.
- W2118887788 hasRelatedWork W2409173334 @default.
- W2118887788 hasRelatedWork W3093661785 @default.
- W2118887788 hasRelatedWork W3120954237 @default.
- W2118887788 hasRelatedWork W3172353870 @default.
- W2118887788 hasVolume "25" @default.
- W2118887788 isParatext "false" @default.
- W2118887788 isRetracted "false" @default.
- W2118887788 magId "2118887788" @default.
- W2118887788 workType "article" @default.