Matches in SemOpenAlex for { <https://semopenalex.org/work/W2118958611> ?p ?o ?g. }
- W2118958611 endingPage "2260" @default.
- W2118958611 startingPage "2245" @default.
- W2118958611 abstract "Nitrogen retention and recycling are topics of enduring interest in ecosystem ecology, yet we lack a mechanistic field-tested model of how these processes work in unpolluted, old-growth temperate forests. Forests of the Cordillera Piuchué Ecosystem Study (CPES) in southern Chile provide an opportunity to examine nitrogen cycling and retention in a forest that is virtually free of human disturbance. We applied 15N pool dilution and pulse-chase tracer techniques as complementary approaches within small plots to understand flows of inorganic nitrogen in the surface soil of an evergreen mixed-angiosperm forest. We also followed separate pulses of 15NH4+ and 15NO3− for two years to gain insights into how short-term mechanisms of inorganic nitrogen cycling translate into long-term patterns of ecosystem nitrogen retention. Strong consumption appears to limit losses of NH4+ and NO3− from this forest, and predominantly by the same mechanisms for both forms of nitrogen. As a result, the extent of 15NH4+ and 15NO3− retention were also similar, yet ∼44-fold higher rates of gross NH4+ production leads to the dominance of NH4+ over NO3− in soil and stream waters. Microbial biomass played a key role in the short-term assimilation of 15N tracers, but retention was only transient. Turnover of 15N through microbial biomass was rapid and appeared to be only weakly retained in soil exchangeable pools, fine roots, and soil organic matter, resulting in substantial losses of 15N from soils within weeks of tracer additions. Assimilation of 15N into fine roots was a much larger sink (13%) than has been reported for other forested ecosystems (1–3%), and the transport of 15N from microbial biomass to aboveground sinks in vegetation may explain the observed loss of 15N from surface soils over time. Losses of 15N from microbial biomass did not enter the extractable pool of dissolved organic nitrogen (DON), suggesting that DON losses do not originate directly from active microbial turnover, and also that microbial activity may not exert as much control over hydrologic losses of DON as compared to losses of NH4+ and NO3−. Our results also suggest an additional rapid and extremely transient (1 d) mechanism of NO3− retention via incorporation into extractable-DON. The long-term retention of 15N at the whole-plot level did not differ significantly between 15NH4+ and 15NO3− treatments, and averaged 65% after two years. The lack of an appreciable change in 15N recovery for ∼1.5 yr following the initial assimilation, redistribution, and loss of 15N suggests that the majority of 15N was not recycled over the long term through inorganic nitrogen pools and microbial biomass via mineralization/immobilization pathways. Instead, long-term retention of inorganic 15N appeared to be dominated by rapid and possibly direct assimilation into a slow-turnover pool of soil organic matter. Elevated 15N contents in fine-root and microbial pools for up to two years after 15N additions, however, also indicated sustained biotic retention of inorganic nitrogen. Our results suggest very similar retention of NH4+ and NO3− that is dominated by rapid assimilation and turnover through microbial biomass in the short term (weeks), and transfer from microbial biomass into nitrogen-conserving plant (and to a lesser extent soil organic matter) pools in the long term (years). These processes result in efficient long-term retention of nitrogen in unpolluted old-growth temperate forests." @default.
- W2118958611 created "2016-06-24" @default.
- W2118958611 creator A5022417084 @default.
- W2118958611 creator A5024572966 @default.
- W2118958611 date "2001-08-01" @default.
- W2118958611 modified "2023-10-17" @default.
- W2118958611 title "FLUXES AND FATES OF NITROGEN IN SOIL OF AN UNPOLLUTED OLD-GROWTH TEMPERATE FOREST, SOUTHERN CHILE" @default.
- W2118958611 cites W1484254286 @default.
- W2118958611 cites W1964004247 @default.
- W2118958611 cites W1965633436 @default.
- W2118958611 cites W1967333645 @default.
- W2118958611 cites W1968272806 @default.
- W2118958611 cites W1977103417 @default.
- W2118958611 cites W1981977817 @default.
- W2118958611 cites W1986005069 @default.
- W2118958611 cites W1988623303 @default.
- W2118958611 cites W1991705956 @default.
- W2118958611 cites W1992914137 @default.
- W2118958611 cites W1994609212 @default.
- W2118958611 cites W1998975835 @default.
- W2118958611 cites W2005625468 @default.
- W2118958611 cites W2011427455 @default.
- W2118958611 cites W2013803045 @default.
- W2118958611 cites W2018408342 @default.
- W2118958611 cites W2018672425 @default.
- W2118958611 cites W2019129143 @default.
- W2118958611 cites W2024274521 @default.
- W2118958611 cites W2035431852 @default.
- W2118958611 cites W2039092119 @default.
- W2118958611 cites W2039186736 @default.
- W2118958611 cites W2040682725 @default.
- W2118958611 cites W2042915001 @default.
- W2118958611 cites W2043349865 @default.
- W2118958611 cites W2043969391 @default.
- W2118958611 cites W2044200233 @default.
- W2118958611 cites W2045833426 @default.
- W2118958611 cites W2051272353 @default.
- W2118958611 cites W2060890236 @default.
- W2118958611 cites W2066429486 @default.
- W2118958611 cites W2069040097 @default.
- W2118958611 cites W2075095605 @default.
- W2118958611 cites W2075970881 @default.
- W2118958611 cites W2077088920 @default.
- W2118958611 cites W2079339553 @default.
- W2118958611 cites W2080836316 @default.
- W2118958611 cites W2086113469 @default.
- W2118958611 cites W2086913304 @default.
- W2118958611 cites W2087455254 @default.
- W2118958611 cites W2087641521 @default.
- W2118958611 cites W2089054223 @default.
- W2118958611 cites W2091114435 @default.
- W2118958611 cites W2107431421 @default.
- W2118958611 cites W2111737244 @default.
- W2118958611 cites W2116181026 @default.
- W2118958611 cites W2126880556 @default.
- W2118958611 cites W2139598145 @default.
- W2118958611 cites W2140944507 @default.
- W2118958611 cites W2147489195 @default.
- W2118958611 cites W2152522309 @default.
- W2118958611 cites W2157994386 @default.
- W2118958611 cites W2160861091 @default.
- W2118958611 cites W2809674836 @default.
- W2118958611 cites W4232108226 @default.
- W2118958611 cites W4237435196 @default.
- W2118958611 doi "https://doi.org/10.1890/0012-9658(2001)082[2245:fafoni]2.0.co;2" @default.
- W2118958611 hasPublicationYear "2001" @default.
- W2118958611 type Work @default.
- W2118958611 sameAs 2118958611 @default.
- W2118958611 citedByCount "185" @default.
- W2118958611 countsByYear W21189586112012 @default.
- W2118958611 countsByYear W21189586112013 @default.
- W2118958611 countsByYear W21189586112014 @default.
- W2118958611 countsByYear W21189586112015 @default.
- W2118958611 countsByYear W21189586112016 @default.
- W2118958611 countsByYear W21189586112017 @default.
- W2118958611 countsByYear W21189586112018 @default.
- W2118958611 countsByYear W21189586112019 @default.
- W2118958611 countsByYear W21189586112020 @default.
- W2118958611 countsByYear W21189586112021 @default.
- W2118958611 countsByYear W21189586112022 @default.
- W2118958611 crossrefType "journal-article" @default.
- W2118958611 hasAuthorship W2118958611A5022417084 @default.
- W2118958611 hasAuthorship W2118958611A5024572966 @default.
- W2118958611 hasConcept C104317684 @default.
- W2118958611 hasConcept C110872660 @default.
- W2118958611 hasConcept C143050476 @default.
- W2118958611 hasConcept C151913843 @default.
- W2118958611 hasConcept C159390177 @default.
- W2118958611 hasConcept C159750122 @default.
- W2118958611 hasConcept C177924670 @default.
- W2118958611 hasConcept C178790620 @default.
- W2118958611 hasConcept C185592680 @default.
- W2118958611 hasConcept C188442384 @default.
- W2118958611 hasConcept C18903297 @default.
- W2118958611 hasConcept C205649164 @default.
- W2118958611 hasConcept C39432304 @default.
- W2118958611 hasConcept C49045045 @default.
- W2118958611 hasConcept C537208039 @default.