Matches in SemOpenAlex for { <https://semopenalex.org/work/W2118963631> ?p ?o ?g. }
- W2118963631 endingPage "179" @default.
- W2118963631 startingPage "166" @default.
- W2118963631 abstract "The scanning mobility particle sizer (SMPS) technique is a widely employed technique to measure the particle number size distribution, and thus calculate the particle total growth rate. However, growth due to individual atmospheric processes needs to be known precisely and accurately to better model the secondary aerosol distribution. In this study, we use simplified analytical formulas to calculate the growth rates due to self-coagulation, coagulation scavenging and condensation processes of particle size distribution (9–425 nm) measured using SMPS. Firstly, total growth rate is determined from the regression fit of SMPS data plotted between the geometric mean diameter (GMD) of particle size (nm) versus time (hour) measured during a particle growth event. The SMPS measurements were conducted during November-December 2011 in New Delhi. The particle growth event days and non-event days were classified according to the protocol discussed elsewhere. Assuming that the particle number size distribution of a growing population can be described by a unimodal distribution and particles are neutral in the population, we calculated the growth rate due to self-coagulation (GRscoag), which is proportional to the total number of particles in the mode and mode peak diameter. Similarly, assuming that particles with mode peak size 25 nm and above act as a coagulation sink and grow due to scavenging of newly formed nucleation range particles (< 12 nm), we calculated the coagulation scavenging growth rate (GRscav) as a time derivative of the mode peak diameter, which is equivalent to the product of particle diameter and its coagulation sink. The condensation growth rate (GRcond) is calculated based on the assumption that total growth rate is the summation of the growth resulting of three physical processes: self-coagulation, coagulation scavenging and condensation. During the study period, three event days were recorded at the measurement site. To explain the growth rate calculation approach, which is presented here in detail, we have taken SMPS data of one event day (November 4, 2011) as an example (two other event days are also briefly discussed). On November 4, the total average growth rate was found to be 15.4 ± 11 nm/h, while the average GRscoag, GRscav and GRcond were calculated to be 3.8 ± 0.4 (with min and max values of 2.9–5.1 nm/h), 8.0 ± 6 (0.6–19.3 nm/h) and 3.6 nm/h, respectively. These growth rates are comparable to those reported for other urban sites around the world using different methods. This approach is simple, and growth by individual processes can be calculated without knowing several other parameters, which include vapor concentration of atmospheric constituents, heterogeneous processes, and complex modeling procedures." @default.
- W2118963631 created "2016-06-24" @default.
- W2118963631 creator A5056801943 @default.
- W2118963631 creator A5080478698 @default.
- W2118963631 creator A5080517712 @default.
- W2118963631 date "2015-01-01" @default.
- W2118963631 modified "2023-09-26" @default.
- W2118963631 title "A Simplified Approach to Calculate Particle Growth Rate Due to Self-Coagulation, Scavenging and Condensation Using SMPS Measurements during a Particle Growth Event in New Delhi" @default.
- W2118963631 cites W1544276658 @default.
- W2118963631 cites W176751425 @default.
- W2118963631 cites W1973373281 @default.
- W2118963631 cites W1973729801 @default.
- W2118963631 cites W1974987679 @default.
- W2118963631 cites W1975871536 @default.
- W2118963631 cites W1978386307 @default.
- W2118963631 cites W1981471982 @default.
- W2118963631 cites W1988320100 @default.
- W2118963631 cites W2008990337 @default.
- W2118963631 cites W2011444338 @default.
- W2118963631 cites W2020729558 @default.
- W2118963631 cites W2030327499 @default.
- W2118963631 cites W2032209801 @default.
- W2118963631 cites W2038178482 @default.
- W2118963631 cites W2038453176 @default.
- W2118963631 cites W2044933586 @default.
- W2118963631 cites W2064913080 @default.
- W2118963631 cites W2071491360 @default.
- W2118963631 cites W2077561616 @default.
- W2118963631 cites W2081428396 @default.
- W2118963631 cites W2090747458 @default.
- W2118963631 cites W2095461364 @default.
- W2118963631 cites W2096891488 @default.
- W2118963631 cites W2100805591 @default.
- W2118963631 cites W2103614514 @default.
- W2118963631 cites W2105579968 @default.
- W2118963631 cites W2106683183 @default.
- W2118963631 cites W2108288768 @default.
- W2118963631 cites W2108582364 @default.
- W2118963631 cites W2110878334 @default.
- W2118963631 cites W2112039919 @default.
- W2118963631 cites W2117004231 @default.
- W2118963631 cites W2127677857 @default.
- W2118963631 cites W2127781078 @default.
- W2118963631 cites W2133622477 @default.
- W2118963631 cites W2137947806 @default.
- W2118963631 cites W2142351565 @default.
- W2118963631 cites W2143093706 @default.
- W2118963631 cites W2143722980 @default.
- W2118963631 cites W2152981993 @default.
- W2118963631 cites W2154482512 @default.
- W2118963631 cites W2155082834 @default.
- W2118963631 cites W2155433774 @default.
- W2118963631 cites W2156741084 @default.
- W2118963631 cites W2172158005 @default.
- W2118963631 cites W2464759057 @default.
- W2118963631 cites W2468058949 @default.
- W2118963631 cites W2493599319 @default.
- W2118963631 doi "https://doi.org/10.4209/aaqr.2013.12.0350" @default.
- W2118963631 hasPublicationYear "2015" @default.
- W2118963631 type Work @default.
- W2118963631 sameAs 2118963631 @default.
- W2118963631 citedByCount "17" @default.
- W2118963631 countsByYear W21189636312014 @default.
- W2118963631 countsByYear W21189636312015 @default.
- W2118963631 countsByYear W21189636312016 @default.
- W2118963631 countsByYear W21189636312017 @default.
- W2118963631 countsByYear W21189636312018 @default.
- W2118963631 countsByYear W21189636312019 @default.
- W2118963631 countsByYear W21189636312021 @default.
- W2118963631 countsByYear W21189636312022 @default.
- W2118963631 countsByYear W21189636312023 @default.
- W2118963631 crossrefType "journal-article" @default.
- W2118963631 hasAuthorship W2118963631A5056801943 @default.
- W2118963631 hasAuthorship W2118963631A5080478698 @default.
- W2118963631 hasAuthorship W2118963631A5080517712 @default.
- W2118963631 hasBestOaLocation W21189636311 @default.
- W2118963631 hasConcept C111368507 @default.
- W2118963631 hasConcept C118552586 @default.
- W2118963631 hasConcept C121332964 @default.
- W2118963631 hasConcept C127313418 @default.
- W2118963631 hasConcept C144024400 @default.
- W2118963631 hasConcept C144352136 @default.
- W2118963631 hasConcept C147789679 @default.
- W2118963631 hasConcept C149923435 @default.
- W2118963631 hasConcept C15744967 @default.
- W2118963631 hasConcept C159985019 @default.
- W2118963631 hasConcept C178790620 @default.
- W2118963631 hasConcept C185592680 @default.
- W2118963631 hasConcept C187530423 @default.
- W2118963631 hasConcept C192562407 @default.
- W2118963631 hasConcept C204323151 @default.
- W2118963631 hasConcept C20556612 @default.
- W2118963631 hasConcept C2778382381 @default.
- W2118963631 hasConcept C2778517922 @default.
- W2118963631 hasConcept C2778750611 @default.
- W2118963631 hasConcept C2779345167 @default.
- W2118963631 hasConcept C2908647359 @default.
- W2118963631 hasConcept C60448018 @default.