Matches in SemOpenAlex for { <https://semopenalex.org/work/W2119003693> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2119003693 abstract "We study algorithms for the SUBMODULAR Multiway PARTITION problem (SUB-MP). An instance of SUB-MP consists of a finite ground set V, a subset S = {s <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> , S <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> , ..., s <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k</sub> } ⊆ V of k elements called terminals, and a non-negative submodular set function f : 2 <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>V</sup> → ℝ <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>+</sub> on V provided as a value oracle. The goal is to partition V into k sets A <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> ,...,A <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k</sub> to minimize Σ <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>i=1</sub> <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k</sup> f(A <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>i</sub> ) such that for 1 ≤ i ≤ k, s <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>i</sub> ∈ A <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>i</sub> . SUB-MP generalizes some well-known problems such as the MULTIWAY CUT problem in graphs and hypergraphs, and the NODE-WEIGHED MULTIWAY Cut problem in graphs. SUB-MP for arbitrary sub- modular functions (instead of just symmetric functions) was considered by Zhao, Nagamochi and Ibaraki [29]. Previous algorithms were based on greedy splitting and divide and conquer strategies. In recent work [5] we proposed a convex-programming relaxation for SUB-MP based on the Lovasz-extension of a submodular function and showed its applicability for some special cases. In this paper we obtain the following results for arbitrary submodular functions via this relaxation. (1) A 2-approximation for SUB-MP. This improves the (k - 1)-approximation from [29]. (2) A (1.5 - 1/k)-approximation for SUB-MP when f is symmetric. This improves the 2(1 - 1/k)-approximation from [23], [29]." @default.
- W2119003693 created "2016-06-24" @default.
- W2119003693 creator A5025907388 @default.
- W2119003693 creator A5036503505 @default.
- W2119003693 date "2011-10-01" @default.
- W2119003693 modified "2023-10-16" @default.
- W2119003693 title "Approximation Algorithms for Submodular Multiway Partition" @default.
- W2119003693 cites W1498671329 @default.
- W2119003693 cites W1523006294 @default.
- W2119003693 cites W1572332593 @default.
- W2119003693 cites W158604334 @default.
- W2119003693 cites W1695878779 @default.
- W2119003693 cites W1981202693 @default.
- W2119003693 cites W1984283136 @default.
- W2119003693 cites W1985219023 @default.
- W2119003693 cites W1989453388 @default.
- W2119003693 cites W2010004564 @default.
- W2119003693 cites W2026838540 @default.
- W2119003693 cites W2063597011 @default.
- W2119003693 cites W2064933851 @default.
- W2119003693 cites W2108321693 @default.
- W2119003693 cites W2112306992 @default.
- W2119003693 cites W2119003693 @default.
- W2119003693 cites W2129866531 @default.
- W2119003693 cites W2134944545 @default.
- W2119003693 cites W2152986618 @default.
- W2119003693 cites W2167637346 @default.
- W2119003693 cites W3009415557 @default.
- W2119003693 cites W3121576764 @default.
- W2119003693 cites W4248079359 @default.
- W2119003693 doi "https://doi.org/10.1109/focs.2011.34" @default.
- W2119003693 hasPublicationYear "2011" @default.
- W2119003693 type Work @default.
- W2119003693 sameAs 2119003693 @default.
- W2119003693 citedByCount "38" @default.
- W2119003693 countsByYear W21190036932012 @default.
- W2119003693 countsByYear W21190036932013 @default.
- W2119003693 countsByYear W21190036932014 @default.
- W2119003693 countsByYear W21190036932015 @default.
- W2119003693 countsByYear W21190036932016 @default.
- W2119003693 countsByYear W21190036932017 @default.
- W2119003693 countsByYear W21190036932018 @default.
- W2119003693 countsByYear W21190036932019 @default.
- W2119003693 countsByYear W21190036932020 @default.
- W2119003693 countsByYear W21190036932021 @default.
- W2119003693 countsByYear W21190036932022 @default.
- W2119003693 countsByYear W21190036932023 @default.
- W2119003693 crossrefType "proceedings-article" @default.
- W2119003693 hasAuthorship W2119003693A5025907388 @default.
- W2119003693 hasAuthorship W2119003693A5036503505 @default.
- W2119003693 hasBestOaLocation W21190036932 @default.
- W2119003693 hasConcept C11413529 @default.
- W2119003693 hasConcept C114614502 @default.
- W2119003693 hasConcept C154945302 @default.
- W2119003693 hasConcept C178621042 @default.
- W2119003693 hasConcept C33923547 @default.
- W2119003693 hasConcept C41008148 @default.
- W2119003693 hasConceptScore W2119003693C11413529 @default.
- W2119003693 hasConceptScore W2119003693C114614502 @default.
- W2119003693 hasConceptScore W2119003693C154945302 @default.
- W2119003693 hasConceptScore W2119003693C178621042 @default.
- W2119003693 hasConceptScore W2119003693C33923547 @default.
- W2119003693 hasConceptScore W2119003693C41008148 @default.
- W2119003693 hasLocation W21190036931 @default.
- W2119003693 hasLocation W21190036932 @default.
- W2119003693 hasOpenAccess W2119003693 @default.
- W2119003693 hasPrimaryLocation W21190036931 @default.
- W2119003693 hasRelatedWork W1595919516 @default.
- W2119003693 hasRelatedWork W2194604332 @default.
- W2119003693 hasRelatedWork W2748952813 @default.
- W2119003693 hasRelatedWork W2899084033 @default.
- W2119003693 hasRelatedWork W2922450688 @default.
- W2119003693 hasRelatedWork W2945022594 @default.
- W2119003693 hasRelatedWork W2966531942 @default.
- W2119003693 hasRelatedWork W4288560659 @default.
- W2119003693 hasRelatedWork W4379619607 @default.
- W2119003693 hasRelatedWork W4386185001 @default.
- W2119003693 isParatext "false" @default.
- W2119003693 isRetracted "false" @default.
- W2119003693 magId "2119003693" @default.
- W2119003693 workType "article" @default.