Matches in SemOpenAlex for { <https://semopenalex.org/work/W2119005709> ?p ?o ?g. }
- W2119005709 endingPage "138" @default.
- W2119005709 startingPage "122" @default.
- W2119005709 abstract "Estimating the impacts of climate change on groundwater represents one of the most difficult challenges faced by water resources specialists. One difficulty is that simplifying the representation of the hydrological system often leads to discrepancies in projections. This study provides an improved methodology for the estimation of the impacts of climate change on groundwater reserves, where a physically-based surface–subsurface flow model is combined with advanced climate change scenarios for the Geer basin (465 km2), Belgium. Coupled surface–subsurface flow is simulated with the finite element model HydroGeoSphere. The simultaneous solution of surface and subsurface flow equations in HydroGeoSphere, as well as the internal calculation of the actual evapotranspiration as a function of the soil moisture at each node of the defined evaporative zone, improve the representation of interdependent processes like recharge, which is crucial in the context of climate change. More simple models or externally coupled models do not provide the same level of realism. Fully-integrated surface–subsurface flow models have recently gained attention, but have not been used in the context of climate change impact studies. Climate change simulations were obtained from six regional climate model (RCM) scenarios assuming the SRES A2 emission (medium–high) scenario. These RCM scenarios were downscaled using a quantile mapping bias-correction technique that, rather than applying a correction only to the mean, forces the probability distributions of the control simulations of daily temperature and precipitation to match the observed distributions. The same corrections are then applied to RCM scenarios for the future. Climate change scenarios predict hotter and drier summer and warmer and wetter winters. The combined use of an integrated surface–subsurface modelling approach, a spatial representation of the evapotranspiration processes and sophisticated climate change scenarios improves the model realism and projections of climate change impacts on groundwater reserves. For the climatic scenarios considered, the integrated flow simulations show that significant decreases are expected in the groundwater levels (up to 8 m) and in the surface water flow rates (between 9% and 33%) by 2080." @default.
- W2119005709 created "2016-06-24" @default.
- W2119005709 creator A5003289670 @default.
- W2119005709 creator A5042075687 @default.
- W2119005709 creator A5059895971 @default.
- W2119005709 creator A5060309217 @default.
- W2119005709 creator A5061602805 @default.
- W2119005709 creator A5061734411 @default.
- W2119005709 creator A5086994437 @default.
- W2119005709 date "2009-06-01" @default.
- W2119005709 modified "2023-10-10" @default.
- W2119005709 title "Large scale surface–subsurface hydrological model to assess climate change impacts on groundwater reserves" @default.
- W2119005709 cites W123221916 @default.
- W2119005709 cites W1489426233 @default.
- W2119005709 cites W1553433319 @default.
- W2119005709 cites W1590470842 @default.
- W2119005709 cites W1675478785 @default.
- W2119005709 cites W1965846378 @default.
- W2119005709 cites W1966396962 @default.
- W2119005709 cites W1974655800 @default.
- W2119005709 cites W1977212456 @default.
- W2119005709 cites W1980663799 @default.
- W2119005709 cites W1983935102 @default.
- W2119005709 cites W1991901926 @default.
- W2119005709 cites W1996595352 @default.
- W2119005709 cites W1997006702 @default.
- W2119005709 cites W1998998361 @default.
- W2119005709 cites W2001715861 @default.
- W2119005709 cites W2002115844 @default.
- W2119005709 cites W2003838268 @default.
- W2119005709 cites W2006547242 @default.
- W2119005709 cites W2011599296 @default.
- W2119005709 cites W2012650319 @default.
- W2119005709 cites W2014763570 @default.
- W2119005709 cites W2016628424 @default.
- W2119005709 cites W2017142512 @default.
- W2119005709 cites W2018832642 @default.
- W2119005709 cites W2021308029 @default.
- W2119005709 cites W2026156015 @default.
- W2119005709 cites W2028903161 @default.
- W2119005709 cites W2035706559 @default.
- W2119005709 cites W2037641802 @default.
- W2119005709 cites W2046343099 @default.
- W2119005709 cites W2047760271 @default.
- W2119005709 cites W2055695879 @default.
- W2119005709 cites W2067693645 @default.
- W2119005709 cites W2068194125 @default.
- W2119005709 cites W2078683174 @default.
- W2119005709 cites W2084170744 @default.
- W2119005709 cites W2085396229 @default.
- W2119005709 cites W2088243033 @default.
- W2119005709 cites W2093141926 @default.
- W2119005709 cites W2095477753 @default.
- W2119005709 cites W2099054677 @default.
- W2119005709 cites W2119167300 @default.
- W2119005709 cites W2131917069 @default.
- W2119005709 cites W2137438804 @default.
- W2119005709 cites W2161491521 @default.
- W2119005709 cites W2168490566 @default.
- W2119005709 doi "https://doi.org/10.1016/j.jhydrol.2009.04.017" @default.
- W2119005709 hasPublicationYear "2009" @default.
- W2119005709 type Work @default.
- W2119005709 sameAs 2119005709 @default.
- W2119005709 citedByCount "242" @default.
- W2119005709 countsByYear W21190057092012 @default.
- W2119005709 countsByYear W21190057092013 @default.
- W2119005709 countsByYear W21190057092014 @default.
- W2119005709 countsByYear W21190057092015 @default.
- W2119005709 countsByYear W21190057092016 @default.
- W2119005709 countsByYear W21190057092017 @default.
- W2119005709 countsByYear W21190057092018 @default.
- W2119005709 countsByYear W21190057092019 @default.
- W2119005709 countsByYear W21190057092020 @default.
- W2119005709 countsByYear W21190057092021 @default.
- W2119005709 countsByYear W21190057092022 @default.
- W2119005709 countsByYear W21190057092023 @default.
- W2119005709 crossrefType "journal-article" @default.
- W2119005709 hasAuthorship W2119005709A5003289670 @default.
- W2119005709 hasAuthorship W2119005709A5042075687 @default.
- W2119005709 hasAuthorship W2119005709A5059895971 @default.
- W2119005709 hasAuthorship W2119005709A5060309217 @default.
- W2119005709 hasAuthorship W2119005709A5061602805 @default.
- W2119005709 hasAuthorship W2119005709A5061734411 @default.
- W2119005709 hasAuthorship W2119005709A5086994437 @default.
- W2119005709 hasBestOaLocation W21190057092 @default.
- W2119005709 hasConcept C100187453 @default.
- W2119005709 hasConcept C107054158 @default.
- W2119005709 hasConcept C111368507 @default.
- W2119005709 hasConcept C126197015 @default.
- W2119005709 hasConcept C126645576 @default.
- W2119005709 hasConcept C127313418 @default.
- W2119005709 hasConcept C131227075 @default.
- W2119005709 hasConcept C132651083 @default.
- W2119005709 hasConcept C151730666 @default.
- W2119005709 hasConcept C153294291 @default.
- W2119005709 hasConcept C168754636 @default.
- W2119005709 hasConcept C174091901 @default.
- W2119005709 hasConcept C176650113 @default.