Matches in SemOpenAlex for { <https://semopenalex.org/work/W2119288742> ?p ?o ?g. }
- W2119288742 endingPage "1294" @default.
- W2119288742 startingPage "1283" @default.
- W2119288742 abstract "Denoising is always a challenging problem in natural imaging and geophysical data processing. In this paper, we consider the denoising of texture images using a nonlinear reaction-diffusion equation and directional wavelet frames. In our model, a curvelet shrinkage is used for regularization of the diffusion process to preserve important features in the diffusion smoothing and a wave atom shrinkage is used as the reaction in order to preserve and enhance interesting oriented textures. We derive a digital reaction-diffusion filter that lives on graphs and show convergence of the corresponding iteration process. Experimental results and comparisons show very good performance of the proposed model for texture-preserving denoising." @default.
- W2119288742 created "2016-06-24" @default.
- W2119288742 creator A5059739223 @default.
- W2119288742 creator A5078652354 @default.
- W2119288742 date "2008-08-01" @default.
- W2119288742 modified "2023-09-27" @default.
- W2119288742 title "Nonlinear Regularized Reaction-Diffusion Filters for Denoising of Images With Textures" @default.
- W2119288742 cites W1488881187 @default.
- W2119288742 cites W1580244397 @default.
- W2119288742 cites W1963743024 @default.
- W2119288742 cites W1969431737 @default.
- W2119288742 cites W1983415051 @default.
- W2119288742 cites W1992276332 @default.
- W2119288742 cites W1992950686 @default.
- W2119288742 cites W1997283202 @default.
- W2119288742 cites W2008076677 @default.
- W2119288742 cites W2011181254 @default.
- W2119288742 cites W2012164750 @default.
- W2119288742 cites W2012252477 @default.
- W2119288742 cites W2019248995 @default.
- W2119288742 cites W2039158956 @default.
- W2119288742 cites W2039939700 @default.
- W2119288742 cites W2045094421 @default.
- W2119288742 cites W2045559171 @default.
- W2119288742 cites W2052105463 @default.
- W2119288742 cites W2060747019 @default.
- W2119288742 cites W2066630786 @default.
- W2119288742 cites W2069912449 @default.
- W2119288742 cites W2103559027 @default.
- W2119288742 cites W2104492732 @default.
- W2119288742 cites W2115528090 @default.
- W2119288742 cites W2115706991 @default.
- W2119288742 cites W2118900090 @default.
- W2119288742 cites W2122661899 @default.
- W2119288742 cites W2124070220 @default.
- W2119288742 cites W2127447014 @default.
- W2119288742 cites W2132680427 @default.
- W2119288742 cites W2136396015 @default.
- W2119288742 cites W2143510430 @default.
- W2119288742 cites W2149396346 @default.
- W2119288742 cites W2150134853 @default.
- W2119288742 cites W2154996879 @default.
- W2119288742 cites W2157185695 @default.
- W2119288742 cites W2158252006 @default.
- W2119288742 cites W2162547327 @default.
- W2119288742 cites W2163970352 @default.
- W2119288742 cites W2164822588 @default.
- W2119288742 cites W2165252576 @default.
- W2119288742 cites W2167419749 @default.
- W2119288742 cites W3011612142 @default.
- W2119288742 cites W4249045480 @default.
- W2119288742 cites W59771946 @default.
- W2119288742 doi "https://doi.org/10.1109/tip.2008.925305" @default.
- W2119288742 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18632339" @default.
- W2119288742 hasPublicationYear "2008" @default.
- W2119288742 type Work @default.
- W2119288742 sameAs 2119288742 @default.
- W2119288742 citedByCount "62" @default.
- W2119288742 countsByYear W21192887422012 @default.
- W2119288742 countsByYear W21192887422013 @default.
- W2119288742 countsByYear W21192887422014 @default.
- W2119288742 countsByYear W21192887422015 @default.
- W2119288742 countsByYear W21192887422016 @default.
- W2119288742 countsByYear W21192887422017 @default.
- W2119288742 countsByYear W21192887422018 @default.
- W2119288742 countsByYear W21192887422019 @default.
- W2119288742 countsByYear W21192887422020 @default.
- W2119288742 countsByYear W21192887422022 @default.
- W2119288742 crossrefType "journal-article" @default.
- W2119288742 hasAuthorship W2119288742A5059739223 @default.
- W2119288742 hasAuthorship W2119288742A5078652354 @default.
- W2119288742 hasConcept C101453961 @default.
- W2119288742 hasConcept C106131492 @default.
- W2119288742 hasConcept C11413529 @default.
- W2119288742 hasConcept C115961682 @default.
- W2119288742 hasConcept C121332964 @default.
- W2119288742 hasConcept C137685913 @default.
- W2119288742 hasConcept C154945302 @default.
- W2119288742 hasConcept C156140930 @default.
- W2119288742 hasConcept C158622935 @default.
- W2119288742 hasConcept C163294075 @default.
- W2119288742 hasConcept C203504353 @default.
- W2119288742 hasConcept C22597639 @default.
- W2119288742 hasConcept C2776135515 @default.
- W2119288742 hasConcept C2983327147 @default.
- W2119288742 hasConcept C3017618536 @default.
- W2119288742 hasConcept C31972630 @default.
- W2119288742 hasConcept C33923547 @default.
- W2119288742 hasConcept C3770464 @default.
- W2119288742 hasConcept C41008148 @default.
- W2119288742 hasConcept C47432892 @default.
- W2119288742 hasConcept C56739046 @default.
- W2119288742 hasConcept C62520636 @default.
- W2119288742 hasConcept C68710425 @default.
- W2119288742 hasConcept C9417928 @default.
- W2119288742 hasConceptScore W2119288742C101453961 @default.
- W2119288742 hasConceptScore W2119288742C106131492 @default.
- W2119288742 hasConceptScore W2119288742C11413529 @default.