Matches in SemOpenAlex for { <https://semopenalex.org/work/W2119299083> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2119299083 endingPage "62" @default.
- W2119299083 startingPage "51" @default.
- W2119299083 abstract "Effort prediction is a very important issue for software project management. Historical project data sets are frequently used to support such prediction. But missing data are often contained in these data sets and this makes prediction more difficult. One common practice is to ignore the cases with missing data, but this makes the originally small software project database even smaller and can further decrease the accuracy of prediction. The alternative is missing data imputation. There are many imputation methods. Software data sets are frequently characterised by their small size but unfortunately sophisticated imputation methods prefer larger data sets. For this reason we explore using simple methods to impute missing data in small project effort data sets. We propose a class mean imputation (CMI) method based on the k-NN hot deck imputation method (MINI) to impute both continuous and nominal missing data in small data sets. We use an incremental approach to increase the variance of population. To evaluate MINI (and k-NN and CMI methods as benchmarks) we use data sets with 50 cases and 100 cases sampled from a larger industrial data set with 10%, 15%, 20% and 30% missing data percentages respectively. We also simulate Missing Completely at Random (MCAR) and Missing at Random (MAR) missingness mechanisms. The results suggest that the MINI method outperforms both CMI and the k-NN methods. We conclude that this new imputation technique can be used to impute missing values in small data sets." @default.
- W2119299083 created "2016-06-24" @default.
- W2119299083 creator A5019971162 @default.
- W2119299083 creator A5027684680 @default.
- W2119299083 date "2007-01-01" @default.
- W2119299083 modified "2023-09-26" @default.
- W2119299083 title "A new imputation method for small software project data sets" @default.
- W2119299083 cites W1601142477 @default.
- W2119299083 cites W1666151602 @default.
- W2119299083 cites W2011773465 @default.
- W2119299083 cites W2017337590 @default.
- W2119299083 cites W2028020328 @default.
- W2119299083 cites W2031668066 @default.
- W2119299083 cites W2032578483 @default.
- W2119299083 cites W2058128280 @default.
- W2119299083 cites W2095778055 @default.
- W2119299083 cites W2096863518 @default.
- W2119299083 cites W2100358124 @default.
- W2119299083 cites W2136691316 @default.
- W2119299083 cites W2148633389 @default.
- W2119299083 cites W2157542847 @default.
- W2119299083 cites W2167370143 @default.
- W2119299083 cites W4230454892 @default.
- W2119299083 doi "https://doi.org/10.1016/j.jss.2006.05.003" @default.
- W2119299083 hasPublicationYear "2007" @default.
- W2119299083 type Work @default.
- W2119299083 sameAs 2119299083 @default.
- W2119299083 citedByCount "64" @default.
- W2119299083 countsByYear W21192990832012 @default.
- W2119299083 countsByYear W21192990832013 @default.
- W2119299083 countsByYear W21192990832014 @default.
- W2119299083 countsByYear W21192990832015 @default.
- W2119299083 countsByYear W21192990832016 @default.
- W2119299083 countsByYear W21192990832017 @default.
- W2119299083 countsByYear W21192990832018 @default.
- W2119299083 countsByYear W21192990832019 @default.
- W2119299083 countsByYear W21192990832020 @default.
- W2119299083 countsByYear W21192990832021 @default.
- W2119299083 countsByYear W21192990832022 @default.
- W2119299083 countsByYear W21192990832023 @default.
- W2119299083 crossrefType "journal-article" @default.
- W2119299083 hasAuthorship W2119299083A5019971162 @default.
- W2119299083 hasAuthorship W2119299083A5027684680 @default.
- W2119299083 hasConcept C105795698 @default.
- W2119299083 hasConcept C119857082 @default.
- W2119299083 hasConcept C124101348 @default.
- W2119299083 hasConcept C154945302 @default.
- W2119299083 hasConcept C199360897 @default.
- W2119299083 hasConcept C2777904410 @default.
- W2119299083 hasConcept C33923547 @default.
- W2119299083 hasConcept C41008148 @default.
- W2119299083 hasConcept C58041806 @default.
- W2119299083 hasConcept C58489278 @default.
- W2119299083 hasConcept C9357733 @default.
- W2119299083 hasConceptScore W2119299083C105795698 @default.
- W2119299083 hasConceptScore W2119299083C119857082 @default.
- W2119299083 hasConceptScore W2119299083C124101348 @default.
- W2119299083 hasConceptScore W2119299083C154945302 @default.
- W2119299083 hasConceptScore W2119299083C199360897 @default.
- W2119299083 hasConceptScore W2119299083C2777904410 @default.
- W2119299083 hasConceptScore W2119299083C33923547 @default.
- W2119299083 hasConceptScore W2119299083C41008148 @default.
- W2119299083 hasConceptScore W2119299083C58041806 @default.
- W2119299083 hasConceptScore W2119299083C58489278 @default.
- W2119299083 hasConceptScore W2119299083C9357733 @default.
- W2119299083 hasIssue "1" @default.
- W2119299083 hasLocation W21192990831 @default.
- W2119299083 hasOpenAccess W2119299083 @default.
- W2119299083 hasPrimaryLocation W21192990831 @default.
- W2119299083 hasRelatedWork W2073720856 @default.
- W2119299083 hasRelatedWork W2403529470 @default.
- W2119299083 hasRelatedWork W2541565311 @default.
- W2119299083 hasRelatedWork W2751555317 @default.
- W2119299083 hasRelatedWork W2784019465 @default.
- W2119299083 hasRelatedWork W2900766238 @default.
- W2119299083 hasRelatedWork W3021292873 @default.
- W2119299083 hasRelatedWork W3049453136 @default.
- W2119299083 hasRelatedWork W4312712358 @default.
- W2119299083 hasRelatedWork W569810835 @default.
- W2119299083 hasVolume "80" @default.
- W2119299083 isParatext "false" @default.
- W2119299083 isRetracted "false" @default.
- W2119299083 magId "2119299083" @default.
- W2119299083 workType "article" @default.