Matches in SemOpenAlex for { <https://semopenalex.org/work/W2119314043> ?p ?o ?g. }
- W2119314043 endingPage "171" @default.
- W2119314043 startingPage "157" @default.
- W2119314043 abstract "A strategy is presented to incorporate prior information from conceptual geological models in probabilistic inversion of geophysical data. The conceptual geological models are represented by multiple-point statistics training images (TIs) featuring the expected lithological units and structural patterns. Information from an ensemble of TI realizations is used in two different ways. First, dominant modes are identified by analysis of the frequency content in the realizations, which drastically reduces the model parameter space in the frequency-amplitude domain. Second, the distributions of global, summary metrics (e.g. model roughness) are used to formulate a prior probability density function. The inverse problem is formulated in a Bayesian framework and the posterior pdf is sampled using Markov chain Monte Carlo simulation. The usefulness and applicability of this method is demonstrated on two case studies in which synthetic crosshole ground-penetrating radar traveltime data are inverted to recover 2-D porosity fields. The use of prior information from TIs significantly enhances the reliability of the posterior models by removing inversion artefacts and improving individual parameter estimates. The proposed methodology reduces the ambiguity inherent in the inversion of high-dimensional parameter spaces, accommodates a wide range of summary statistics and geophysical forward problems." @default.
- W2119314043 created "2016-06-24" @default.
- W2119314043 creator A5025871169 @default.
- W2119314043 creator A5042659508 @default.
- W2119314043 creator A5058095108 @default.
- W2119314043 creator A5083848479 @default.
- W2119314043 date "2015-02-11" @default.
- W2119314043 modified "2023-10-01" @default.
- W2119314043 title "Summary statistics from training images as prior information in probabilistic inversion" @default.
- W2119314043 cites W1498909268 @default.
- W2119314043 cites W1499512010 @default.
- W2119314043 cites W1505999316 @default.
- W2119314043 cites W1510304372 @default.
- W2119314043 cites W1512208174 @default.
- W2119314043 cites W1537810918 @default.
- W2119314043 cites W1622545880 @default.
- W2119314043 cites W1861725096 @default.
- W2119314043 cites W1967409080 @default.
- W2119314043 cites W1971972973 @default.
- W2119314043 cites W1974113566 @default.
- W2119314043 cites W1975862709 @default.
- W2119314043 cites W1983929161 @default.
- W2119314043 cites W1988041530 @default.
- W2119314043 cites W1999070203 @default.
- W2119314043 cites W2003054657 @default.
- W2119314043 cites W2010625929 @default.
- W2119314043 cites W2010762552 @default.
- W2119314043 cites W2011120729 @default.
- W2119314043 cites W2016197888 @default.
- W2119314043 cites W2018173843 @default.
- W2119314043 cites W2024315245 @default.
- W2119314043 cites W2025756504 @default.
- W2119314043 cites W2031614119 @default.
- W2119314043 cites W2039474627 @default.
- W2119314043 cites W2046956594 @default.
- W2119314043 cites W2069157151 @default.
- W2119314043 cites W2076094691 @default.
- W2119314043 cites W2077434352 @default.
- W2119314043 cites W2087070363 @default.
- W2119314043 cites W2098550720 @default.
- W2119314043 cites W2098591732 @default.
- W2119314043 cites W2102243861 @default.
- W2119314043 cites W2103559027 @default.
- W2119314043 cites W2106407799 @default.
- W2119314043 cites W2108064160 @default.
- W2119314043 cites W2108253292 @default.
- W2119314043 cites W2110256088 @default.
- W2119314043 cites W2114246352 @default.
- W2119314043 cites W2114770744 @default.
- W2119314043 cites W2117681582 @default.
- W2119314043 cites W2119179880 @default.
- W2119314043 cites W2123023966 @default.
- W2119314043 cites W2123617947 @default.
- W2119314043 cites W2133247056 @default.
- W2119314043 cites W2142448321 @default.
- W2119314043 cites W2144603899 @default.
- W2119314043 cites W2144661611 @default.
- W2119314043 cites W2148534890 @default.
- W2119314043 cites W2152415136 @default.
- W2119314043 cites W2154474992 @default.
- W2119314043 cites W2157602358 @default.
- W2119314043 cites W2164375525 @default.
- W2119314043 cites W2164418689 @default.
- W2119314043 cites W2164452299 @default.
- W2119314043 cites W2165342902 @default.
- W2119314043 cites W2165636389 @default.
- W2119314043 cites W2169759926 @default.
- W2119314043 cites W2172266364 @default.
- W2119314043 cites W2485139401 @default.
- W2119314043 cites W2731767860 @default.
- W2119314043 doi "https://doi.org/10.1093/gji/ggv008" @default.
- W2119314043 hasPublicationYear "2015" @default.
- W2119314043 type Work @default.
- W2119314043 sameAs 2119314043 @default.
- W2119314043 citedByCount "43" @default.
- W2119314043 countsByYear W21193140432015 @default.
- W2119314043 countsByYear W21193140432016 @default.
- W2119314043 countsByYear W21193140432017 @default.
- W2119314043 countsByYear W21193140432018 @default.
- W2119314043 countsByYear W21193140432019 @default.
- W2119314043 countsByYear W21193140432020 @default.
- W2119314043 countsByYear W21193140432021 @default.
- W2119314043 countsByYear W21193140432022 @default.
- W2119314043 countsByYear W21193140432023 @default.
- W2119314043 crossrefType "journal-article" @default.
- W2119314043 hasAuthorship W2119314043A5025871169 @default.
- W2119314043 hasAuthorship W2119314043A5042659508 @default.
- W2119314043 hasAuthorship W2119314043A5058095108 @default.
- W2119314043 hasAuthorship W2119314043A5083848479 @default.
- W2119314043 hasBestOaLocation W21193140431 @default.
- W2119314043 hasConcept C105795698 @default.
- W2119314043 hasConcept C107673813 @default.
- W2119314043 hasConcept C111350023 @default.
- W2119314043 hasConcept C11413529 @default.
- W2119314043 hasConcept C119857082 @default.
- W2119314043 hasConcept C127313418 @default.
- W2119314043 hasConcept C134306372 @default.
- W2119314043 hasConcept C135252773 @default.