Matches in SemOpenAlex for { <https://semopenalex.org/work/W2119322182> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2119322182 endingPage "345" @default.
- W2119322182 startingPage "325" @default.
- W2119322182 abstract "With recent estimates of drug development costs on the order of $800 million and increased pressure to reduce consumer drug costs, it is not surprising that the pharmaceutical industry is keenly interested in reducing the overall expense associated with drug development. An analysis of the reasons for attrition during the drug development process found that over half of all failures can be attributed to problems with human or animal pharmacokinetics and toxicity. Discovering pharmacokinetics and toxicity liabilities late within the drug development process results in wasted resource expenditures. This argues dramatically for evaluation of these properties as early as possible, leading to the concept of Fail Early. Computational models provide a low cost, flexible evaluation of compound properties that can be implemented and used prior to chemical synthesis thereby creating an alternative philosophy of Design for Success. Here we review the history and current trends within ADME/Tox modeling and discuss important issues related to development of computational models. In addition, we review some of the commercially available tools to achieve this goal as well as methods developed internally to address these issues from the design stage through development and optimization of drug candidates. In particular, we highlight those features that we feel best exemplify the Design for Success philosophy. Keywords: qsar, neural network models, descriptor, logp, blood-brain barrier, cypa isoforms" @default.
- W2119322182 created "2016-06-24" @default.
- W2119322182 creator A5002154156 @default.
- W2119322182 creator A5002381958 @default.
- W2119322182 creator A5048934561 @default.
- W2119322182 creator A5079734014 @default.
- W2119322182 date "2005-10-01" @default.
- W2119322182 modified "2023-09-27" @default.
- W2119322182 title "Computational ADME/Tox Modeling: Aiding Understanding and Enhancing Decision Making in Drug Design" @default.
- W2119322182 doi "https://doi.org/10.2174/157340905774330309" @default.
- W2119322182 hasPublicationYear "2005" @default.
- W2119322182 type Work @default.
- W2119322182 sameAs 2119322182 @default.
- W2119322182 citedByCount "12" @default.
- W2119322182 countsByYear W21193221822015 @default.
- W2119322182 countsByYear W21193221822021 @default.
- W2119322182 countsByYear W21193221822023 @default.
- W2119322182 crossrefType "journal-article" @default.
- W2119322182 hasAuthorship W2119322182A5002154156 @default.
- W2119322182 hasAuthorship W2119322182A5002381958 @default.
- W2119322182 hasAuthorship W2119322182A5048934561 @default.
- W2119322182 hasAuthorship W2119322182A5079734014 @default.
- W2119322182 hasConcept C111919701 @default.
- W2119322182 hasConcept C112930515 @default.
- W2119322182 hasConcept C127413603 @default.
- W2119322182 hasConcept C183696295 @default.
- W2119322182 hasConcept C2779652045 @default.
- W2119322182 hasConcept C2780035454 @default.
- W2119322182 hasConcept C41008148 @default.
- W2119322182 hasConcept C539667460 @default.
- W2119322182 hasConcept C64903051 @default.
- W2119322182 hasConcept C69366308 @default.
- W2119322182 hasConcept C71924100 @default.
- W2119322182 hasConcept C98045186 @default.
- W2119322182 hasConcept C98274493 @default.
- W2119322182 hasConceptScore W2119322182C111919701 @default.
- W2119322182 hasConceptScore W2119322182C112930515 @default.
- W2119322182 hasConceptScore W2119322182C127413603 @default.
- W2119322182 hasConceptScore W2119322182C183696295 @default.
- W2119322182 hasConceptScore W2119322182C2779652045 @default.
- W2119322182 hasConceptScore W2119322182C2780035454 @default.
- W2119322182 hasConceptScore W2119322182C41008148 @default.
- W2119322182 hasConceptScore W2119322182C539667460 @default.
- W2119322182 hasConceptScore W2119322182C64903051 @default.
- W2119322182 hasConceptScore W2119322182C69366308 @default.
- W2119322182 hasConceptScore W2119322182C71924100 @default.
- W2119322182 hasConceptScore W2119322182C98045186 @default.
- W2119322182 hasConceptScore W2119322182C98274493 @default.
- W2119322182 hasIssue "4" @default.
- W2119322182 hasLocation W21193221821 @default.
- W2119322182 hasOpenAccess W2119322182 @default.
- W2119322182 hasPrimaryLocation W21193221821 @default.
- W2119322182 hasRelatedWork W103553032 @default.
- W2119322182 hasRelatedWork W1538981095 @default.
- W2119322182 hasRelatedWork W2061077052 @default.
- W2119322182 hasRelatedWork W2065252256 @default.
- W2119322182 hasRelatedWork W2119322182 @default.
- W2119322182 hasRelatedWork W2191564781 @default.
- W2119322182 hasRelatedWork W2425373322 @default.
- W2119322182 hasRelatedWork W2437428173 @default.
- W2119322182 hasRelatedWork W2460497076 @default.
- W2119322182 hasRelatedWork W2546948247 @default.
- W2119322182 hasVolume "1" @default.
- W2119322182 isParatext "false" @default.
- W2119322182 isRetracted "false" @default.
- W2119322182 magId "2119322182" @default.
- W2119322182 workType "article" @default.