Matches in SemOpenAlex for { <https://semopenalex.org/work/W2119433042> ?p ?o ?g. }
- W2119433042 endingPage "257" @default.
- W2119433042 startingPage "241" @default.
- W2119433042 abstract "Despite QTL mapping being a routine procedure in plant breeding, approaches that fully exploit data from multi-trait multi-environment (MTME) trials are limited. Mixed models have been proposed both for multi-trait QTL analysis and multi-environment QTL analysis, but these approaches break down when the number of traits and environments increases. We present models for an efficient QTL analysis of MTME data with mixed models by reducing the dimensionality of the genetic variance–covariance matrix by structuring this matrix using direct products of relatively simple matrices representing variation in the trait and environmental dimension. In the context of MTME data, we address how to model QTL by environment interactions and the genetic basis of heterogeneity of variance and correlations between traits and environments. We illustrate our approach with an example including five traits across eight stress trials in CIMMYT maize. We detected 36 QTLs affecting yield, anthesis-silking interval, male flowering, ear number, and plant height in maize. Our approach does not require specialised software as it can be implemented in any statistical package with mixed model facilities." @default.
- W2119433042 created "2016-06-24" @default.
- W2119433042 creator A5039828449 @default.
- W2119433042 creator A5045062917 @default.
- W2119433042 creator A5055728337 @default.
- W2119433042 creator A5079031021 @default.
- W2119433042 creator A5089048683 @default.
- W2119433042 date "2007-12-07" @default.
- W2119433042 modified "2023-10-16" @default.
- W2119433042 title "A multi-trait multi-environment QTL mixed model with an application to drought and nitrogen stress trials in maize (Zea mays L.)" @default.
- W2119433042 cites W1509955644 @default.
- W2119433042 cites W1526504068 @default.
- W2119433042 cites W1541473379 @default.
- W2119433042 cites W1824346405 @default.
- W2119433042 cites W1835754911 @default.
- W2119433042 cites W1971730737 @default.
- W2119433042 cites W1983667033 @default.
- W2119433042 cites W1985804706 @default.
- W2119433042 cites W1986037157 @default.
- W2119433042 cites W1987670139 @default.
- W2119433042 cites W2000084758 @default.
- W2119433042 cites W2011837250 @default.
- W2119433042 cites W2014196023 @default.
- W2119433042 cites W2020111384 @default.
- W2119433042 cites W2024429860 @default.
- W2119433042 cites W2025091503 @default.
- W2119433042 cites W2026607452 @default.
- W2119433042 cites W2034608799 @default.
- W2119433042 cites W2037812929 @default.
- W2119433042 cites W2047744754 @default.
- W2119433042 cites W2052493164 @default.
- W2119433042 cites W2056682522 @default.
- W2119433042 cites W2065169165 @default.
- W2119433042 cites W2072502112 @default.
- W2119433042 cites W2081212535 @default.
- W2119433042 cites W2100608447 @default.
- W2119433042 cites W2107755054 @default.
- W2119433042 cites W2117610905 @default.
- W2119433042 cites W2118069556 @default.
- W2119433042 cites W2129192099 @default.
- W2119433042 cites W2132315916 @default.
- W2119433042 cites W2141626473 @default.
- W2119433042 cites W2144119471 @default.
- W2119433042 cites W2144586113 @default.
- W2119433042 cites W2158442659 @default.
- W2119433042 cites W2160352774 @default.
- W2119433042 cites W2164818215 @default.
- W2119433042 cites W2168175751 @default.
- W2119433042 cites W2323139275 @default.
- W2119433042 cites W2329493219 @default.
- W2119433042 cites W2330477134 @default.
- W2119433042 cites W4230076583 @default.
- W2119433042 cites W821203829 @default.
- W2119433042 doi "https://doi.org/10.1007/s10681-007-9594-0" @default.
- W2119433042 hasPublicationYear "2007" @default.
- W2119433042 type Work @default.
- W2119433042 sameAs 2119433042 @default.
- W2119433042 citedByCount "138" @default.
- W2119433042 countsByYear W21194330422012 @default.
- W2119433042 countsByYear W21194330422013 @default.
- W2119433042 countsByYear W21194330422014 @default.
- W2119433042 countsByYear W21194330422015 @default.
- W2119433042 countsByYear W21194330422016 @default.
- W2119433042 countsByYear W21194330422017 @default.
- W2119433042 countsByYear W21194330422018 @default.
- W2119433042 countsByYear W21194330422019 @default.
- W2119433042 countsByYear W21194330422020 @default.
- W2119433042 countsByYear W21194330422021 @default.
- W2119433042 countsByYear W21194330422022 @default.
- W2119433042 countsByYear W21194330422023 @default.
- W2119433042 crossrefType "journal-article" @default.
- W2119433042 hasAuthorship W2119433042A5039828449 @default.
- W2119433042 hasAuthorship W2119433042A5045062917 @default.
- W2119433042 hasAuthorship W2119433042A5055728337 @default.
- W2119433042 hasAuthorship W2119433042A5079031021 @default.
- W2119433042 hasAuthorship W2119433042A5089048683 @default.
- W2119433042 hasBestOaLocation W21194330421 @default.
- W2119433042 hasConcept C104317684 @default.
- W2119433042 hasConcept C105795698 @default.
- W2119433042 hasConcept C106934330 @default.
- W2119433042 hasConcept C121212380 @default.
- W2119433042 hasConcept C122735190 @default.
- W2119433042 hasConcept C151730666 @default.
- W2119433042 hasConcept C16012445 @default.
- W2119433042 hasConcept C199360897 @default.
- W2119433042 hasConcept C21249469 @default.
- W2119433042 hasConcept C2779343474 @default.
- W2119433042 hasConcept C30481170 @default.
- W2119433042 hasConcept C33923547 @default.
- W2119433042 hasConcept C41008148 @default.
- W2119433042 hasConcept C54355233 @default.
- W2119433042 hasConcept C6557445 @default.
- W2119433042 hasConcept C81941488 @default.
- W2119433042 hasConcept C86803240 @default.
- W2119433042 hasConceptScore W2119433042C104317684 @default.
- W2119433042 hasConceptScore W2119433042C105795698 @default.
- W2119433042 hasConceptScore W2119433042C106934330 @default.
- W2119433042 hasConceptScore W2119433042C121212380 @default.