Matches in SemOpenAlex for { <https://semopenalex.org/work/W2119474422> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2119474422 abstract "The complexity in requirements of the present-day software, which are often very large in nature has lead to increase in more number of lines of code, resulting in more number of modules. There is every possibility that some of the modules may give rise to varieties of defects, if testing is not done meticulously. In practice, it is not possible to carry out white box testing of every module of any software. Thus, software testing needs to be done selectively for the modules, which are prone to faults. Identifying the probable fault-prone modules is a critical task, carried out for any software. This dissertation, emphasizes on design of prediction and classication models to detect faultprone classes for object-oriented programs. Then, test data are generated for a particular task to check the functionality of the software product. In the eld of object-oriented software engineering, it is observed that Chidamber and Kemerer (CK) software metrics suite is more frequently used for fault prediction analysis, as it covers the unique aspects of object - oriented programming such as the complexity, data abstraction, and inheritance. It is observed that one of the most important goals of fault prediction is to detectfault prone modules as early as possible in the software development life cycle (SDLC). Numerous authors have used design and code metrics for predicting fault-prone modules. In this work, design metrics are used for fault prediction. In order to carry out fault prediction analysis, prediction models are designed using machine learning methods. Machine learning methods such as Statistical methods, Articial neural network, Radial basis function network, Functional link articial neural network, and Probabilistic neural network are deployedfor fault prediction analysis. In the rst phase, fault prediction is performed using the CK metrics suite. In the next phase, the reduced feature sets of CKmetrics suite obtained by applying principal component analysis and rough set theory are used to perform fault prediction. A comparative approach is drawn to nd a suitable prediction model among the set of designed models for fault prediction. Prediction models designed for fault proneness, need to be validated for their eciency. To achieve this, a cost-based evaluation framework is designed to evaluate the eectiveness of the designed fault prediction models. This framework, is based on the classication of classes as faulty or not-faulty. In this cost-based analysis, it is observed that fault prediction is found to be suitable where normalized estimated fault removal cost (NEcost) is less thancertain threshold value. Also this indicated that any prediction model having NEcost greater than the threshold value are not suitable for fault prediction, and then further these classes are unit tested. All the prediction and classier models used in the fault prediction analysis are applied on a case study viz., Apache Integration Framework (AIF). The metric data values are obtainedfrom PROMISE repository and are mined using Chidamber and Kemerer Java Metrics (CKJM) tool. Test data are generated for object-oriented program for withdrawal task in Bank ATM using three meta-heuristic search algorithms such as Clonal selection algorithm, Binary particle swarm optimization, and Articial bee colony algorithm. It is observed that Articial bee colony algorithm is ableto obtain near optimal test data when compared to the other two algorithms. The test data are generated for withdrawal task based on the tness function derived by using the branch distance proposed by Bogdan Korel. The generated test data ensure the proper functionality or the correctness of the programmed module in a software." @default.
- W2119474422 created "2016-06-24" @default.
- W2119474422 creator A5050591345 @default.
- W2119474422 date "2015-08-01" @default.
- W2119474422 modified "2023-09-26" @default.
- W2119474422 title "Software Fault Prediction and Test Data Generation Using Articial Intelligent Techniques" @default.
- W2119474422 hasPublicationYear "2015" @default.
- W2119474422 type Work @default.
- W2119474422 sameAs 2119474422 @default.
- W2119474422 citedByCount "0" @default.
- W2119474422 crossrefType "dissertation" @default.
- W2119474422 hasAuthorship W2119474422A5050591345 @default.
- W2119474422 hasConcept C104317684 @default.
- W2119474422 hasConcept C115903868 @default.
- W2119474422 hasConcept C120617098 @default.
- W2119474422 hasConcept C127413603 @default.
- W2119474422 hasConcept C149091818 @default.
- W2119474422 hasConcept C161821725 @default.
- W2119474422 hasConcept C185592680 @default.
- W2119474422 hasConcept C186846655 @default.
- W2119474422 hasConcept C199360897 @default.
- W2119474422 hasConcept C200601418 @default.
- W2119474422 hasConcept C2777904410 @default.
- W2119474422 hasConcept C2780902518 @default.
- W2119474422 hasConcept C41008148 @default.
- W2119474422 hasConcept C50712370 @default.
- W2119474422 hasConcept C529173508 @default.
- W2119474422 hasConcept C52928878 @default.
- W2119474422 hasConcept C55493867 @default.
- W2119474422 hasConcept C82214349 @default.
- W2119474422 hasConceptScore W2119474422C104317684 @default.
- W2119474422 hasConceptScore W2119474422C115903868 @default.
- W2119474422 hasConceptScore W2119474422C120617098 @default.
- W2119474422 hasConceptScore W2119474422C127413603 @default.
- W2119474422 hasConceptScore W2119474422C149091818 @default.
- W2119474422 hasConceptScore W2119474422C161821725 @default.
- W2119474422 hasConceptScore W2119474422C185592680 @default.
- W2119474422 hasConceptScore W2119474422C186846655 @default.
- W2119474422 hasConceptScore W2119474422C199360897 @default.
- W2119474422 hasConceptScore W2119474422C200601418 @default.
- W2119474422 hasConceptScore W2119474422C2777904410 @default.
- W2119474422 hasConceptScore W2119474422C2780902518 @default.
- W2119474422 hasConceptScore W2119474422C41008148 @default.
- W2119474422 hasConceptScore W2119474422C50712370 @default.
- W2119474422 hasConceptScore W2119474422C529173508 @default.
- W2119474422 hasConceptScore W2119474422C52928878 @default.
- W2119474422 hasConceptScore W2119474422C55493867 @default.
- W2119474422 hasConceptScore W2119474422C82214349 @default.
- W2119474422 hasLocation W21194744221 @default.
- W2119474422 hasOpenAccess W2119474422 @default.
- W2119474422 hasPrimaryLocation W21194744221 @default.
- W2119474422 hasRelatedWork W137013183 @default.
- W2119474422 hasRelatedWork W1838241330 @default.
- W2119474422 hasRelatedWork W1997964410 @default.
- W2119474422 hasRelatedWork W2149007344 @default.
- W2119474422 hasRelatedWork W2339625974 @default.
- W2119474422 hasRelatedWork W2340019743 @default.
- W2119474422 hasRelatedWork W2406363387 @default.
- W2119474422 hasRelatedWork W2484991267 @default.
- W2119474422 hasRelatedWork W2502472381 @default.
- W2119474422 hasRelatedWork W2914911815 @default.
- W2119474422 hasRelatedWork W2935024010 @default.
- W2119474422 hasRelatedWork W2950890737 @default.
- W2119474422 hasRelatedWork W2957645875 @default.
- W2119474422 hasRelatedWork W3010465013 @default.
- W2119474422 hasRelatedWork W3099366044 @default.
- W2119474422 hasRelatedWork W3137104986 @default.
- W2119474422 hasRelatedWork W3206613187 @default.
- W2119474422 hasRelatedWork W91363558 @default.
- W2119474422 hasRelatedWork W2589396429 @default.
- W2119474422 isParatext "false" @default.
- W2119474422 isRetracted "false" @default.
- W2119474422 magId "2119474422" @default.
- W2119474422 workType "dissertation" @default.