Matches in SemOpenAlex for { <https://semopenalex.org/work/W2119539394> ?p ?o ?g. }
- W2119539394 endingPage "777" @default.
- W2119539394 startingPage "768" @default.
- W2119539394 abstract "Abstract Genome‐wide association studies (GWASs) have identified hundreds of single nucleotide polymorphisms (SNPs) associated with complex human diseases. However, risk prediction models based on them have limited discriminatory accuracy. It has been suggested that including many such SNPs can improve predictive performance. Here, we studied various aspects of model building to improve discriminatory accuracy, as measured by the area under the receiver operating characteristic curve (AUC), including: (1) How well does a one‐phase procedure that selects SNPs and estimates odds ratios on the same data perform? (2) How should training data be allocated between SNP selection (Phase 1) and estimation (Phase 2) in a two‐phase procedure? (3) Should SNP selection be based on P ‐value thresholding or ranking P ‐values? (4) How many SNPs should be selected? and (5) Is multivariate estimation preferred to univariate estimation in the presence of linkage disequilibrium (LD)? We used realistic estimates of the distributions of genetic effect sizes, allele frequencies, and LD patterns based on GWAS data for Crohn's disease and prostate cancer. Theory and simulations were used to estimate AUC. Empirical risk models based on 10,000 cases and controls had considerably lower AUC than theoretically achievable. The most critical aspect of prediction model building was initial SNP selection. The single‐phase procedure achieved higher AUC than the two‐phase procedure. Multivariate estimation did not perform as well as univariate (marginal) estimation. For complex diseases and samples of 10,000 or fewer cases and controls, one should limit the number of SNPs to tens or hundreds." @default.
- W2119539394 created "2016-06-24" @default.
- W2119539394 creator A5037297600 @default.
- W2119539394 creator A5042773544 @default.
- W2119539394 creator A5071811696 @default.
- W2119539394 date "2013-10-25" @default.
- W2119539394 modified "2023-10-16" @default.
- W2119539394 title "Strategies for Developing Prediction Models From Genome-Wide Association Studies" @default.
- W2119539394 cites W1970723690 @default.
- W2119539394 cites W1972929463 @default.
- W2119539394 cites W1990700240 @default.
- W2119539394 cites W1991704577 @default.
- W2119539394 cites W1999463453 @default.
- W2119539394 cites W2042308063 @default.
- W2119539394 cites W2048011602 @default.
- W2119539394 cites W2068376654 @default.
- W2119539394 cites W2073865136 @default.
- W2119539394 cites W2074498980 @default.
- W2119539394 cites W2080752222 @default.
- W2119539394 cites W2093887319 @default.
- W2119539394 cites W2097656361 @default.
- W2119539394 cites W2098597355 @default.
- W2119539394 cites W2098744623 @default.
- W2119539394 cites W2100494089 @default.
- W2119539394 cites W2107458416 @default.
- W2119539394 cites W2114688149 @default.
- W2119539394 cites W2121063416 @default.
- W2119539394 cites W2125663761 @default.
- W2119539394 cites W2138069158 @default.
- W2119539394 cites W2142722364 @default.
- W2119539394 cites W2146753368 @default.
- W2119539394 cites W2150965754 @default.
- W2119539394 cites W2152557977 @default.
- W2119539394 cites W2153968413 @default.
- W2119539394 cites W2155496693 @default.
- W2119539394 doi "https://doi.org/10.1002/gepi.21762" @default.
- W2119539394 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24166696" @default.
- W2119539394 hasPublicationYear "2013" @default.
- W2119539394 type Work @default.
- W2119539394 sameAs 2119539394 @default.
- W2119539394 citedByCount "22" @default.
- W2119539394 countsByYear W21195393942014 @default.
- W2119539394 countsByYear W21195393942015 @default.
- W2119539394 countsByYear W21195393942016 @default.
- W2119539394 countsByYear W21195393942017 @default.
- W2119539394 countsByYear W21195393942018 @default.
- W2119539394 countsByYear W21195393942019 @default.
- W2119539394 countsByYear W21195393942020 @default.
- W2119539394 countsByYear W21195393942021 @default.
- W2119539394 countsByYear W21195393942022 @default.
- W2119539394 countsByYear W21195393942023 @default.
- W2119539394 crossrefType "journal-article" @default.
- W2119539394 hasAuthorship W2119539394A5037297600 @default.
- W2119539394 hasAuthorship W2119539394A5042773544 @default.
- W2119539394 hasAuthorship W2119539394A5071811696 @default.
- W2119539394 hasConcept C104317684 @default.
- W2119539394 hasConcept C105795698 @default.
- W2119539394 hasConcept C106208931 @default.
- W2119539394 hasConcept C135763542 @default.
- W2119539394 hasConcept C153209595 @default.
- W2119539394 hasConcept C154945302 @default.
- W2119539394 hasConcept C161584116 @default.
- W2119539394 hasConcept C186413461 @default.
- W2119539394 hasConcept C199163554 @default.
- W2119539394 hasConcept C33923547 @default.
- W2119539394 hasConcept C35605836 @default.
- W2119539394 hasConcept C41008148 @default.
- W2119539394 hasConcept C54355233 @default.
- W2119539394 hasConcept C58471807 @default.
- W2119539394 hasConcept C81917197 @default.
- W2119539394 hasConcept C86803240 @default.
- W2119539394 hasConceptScore W2119539394C104317684 @default.
- W2119539394 hasConceptScore W2119539394C105795698 @default.
- W2119539394 hasConceptScore W2119539394C106208931 @default.
- W2119539394 hasConceptScore W2119539394C135763542 @default.
- W2119539394 hasConceptScore W2119539394C153209595 @default.
- W2119539394 hasConceptScore W2119539394C154945302 @default.
- W2119539394 hasConceptScore W2119539394C161584116 @default.
- W2119539394 hasConceptScore W2119539394C186413461 @default.
- W2119539394 hasConceptScore W2119539394C199163554 @default.
- W2119539394 hasConceptScore W2119539394C33923547 @default.
- W2119539394 hasConceptScore W2119539394C35605836 @default.
- W2119539394 hasConceptScore W2119539394C41008148 @default.
- W2119539394 hasConceptScore W2119539394C54355233 @default.
- W2119539394 hasConceptScore W2119539394C58471807 @default.
- W2119539394 hasConceptScore W2119539394C81917197 @default.
- W2119539394 hasConceptScore W2119539394C86803240 @default.
- W2119539394 hasFunder F4320338333 @default.
- W2119539394 hasIssue "8" @default.
- W2119539394 hasLocation W21195393941 @default.
- W2119539394 hasLocation W21195393942 @default.
- W2119539394 hasOpenAccess W2119539394 @default.
- W2119539394 hasPrimaryLocation W21195393941 @default.
- W2119539394 hasRelatedWork W1523912222 @default.
- W2119539394 hasRelatedWork W1971424770 @default.
- W2119539394 hasRelatedWork W2066467839 @default.
- W2119539394 hasRelatedWork W2089097350 @default.
- W2119539394 hasRelatedWork W2111842731 @default.