Matches in SemOpenAlex for { <https://semopenalex.org/work/W2119625222> ?p ?o ?g. }
- W2119625222 endingPage "1358" @default.
- W2119625222 startingPage "1348" @default.
- W2119625222 abstract "Background/Aim Lipidomic and metabolomic techniques become more and more important in human health research. Recent developments in analytical techniques enable the investigation of high amounts of substances. The high numbers of metabolites and lipids that are detected with among others mass spectrometric techniques challenge in most cases the statistical processes to bring out stable and interpretable results. This study targets to use the novel non-established statistical method treelet transform (TT) to investigate high numbers of metabolites and lipids and to compare the results with the established method principal component analysis (PCA). Serum lipid and metabolite profiles are investigated regarding their association to anthropometric parameters associated to obesity. Methods From 226 participants of the EPIC (European Prospective Investigation into Cancer and Nutrition)-Potsdam study blood samples were investigated with an untargeted metabolomics approach regarding serum metabolites and lipids. Additionally, participants were surveyed anthropometrically to assess parameters of obesity, such as body mass index (BMI), waist-to-hip-ratio (WHR) and body fat mass. TT and PCA are used to generate treelet components (TCs) and factors summarizing serum metabolites and lipids in new, latent variables without too much loss of information. With partial correlations TCs and factors were associated to anthropometry under the control for relevant parameters, such as sex and age. Results TT with metabolite variables (p = 121) resulted in 5 stable and interpretable TCs explaining 18.9% of the variance within the data. PCA on the same variables generated 4 quite complex, less easily interpretable factors explaining 37.5% of the variance. TT on lipidomic data (p = 353) produced 3 TCs as well as PCA on the same data resulted in 3 factors; the proportion of explained variance was 17.8% for TT and 39.8% for PCA. In both investigations TT ended up with stable components that are easier to interpret than the factors from the PCA. In general, the generated TCs and factors were similar in their structure when the factors are considered regarding the original variables loading high on them. Both TCs and factors showed associations to anthropometric measures. Conclusions TT is a suitable statistical method to generate summarizing, latent variables in data sets with more variables than observations. In the present investigation it resulted in similar latent variables compared to the established method of PCA. Whereby less variance is explained by the summarizing constructs of TT compared to the factors of PCA, TCs are easier to interpret. Additionally the resulting TCs are quite stable in bootstrap samples." @default.
- W2119625222 created "2016-06-24" @default.
- W2119625222 creator A5000618841 @default.
- W2119625222 creator A5009293856 @default.
- W2119625222 creator A5026900535 @default.
- W2119625222 creator A5053275390 @default.
- W2119625222 creator A5083895460 @default.
- W2119625222 date "2015-10-01" @default.
- W2119625222 modified "2023-09-27" @default.
- W2119625222 title "Serum Lipid and Serum Metabolite Components in relation to anthropometric parameters in EPIC-Potsdam participants" @default.
- W2119625222 cites W1892385952 @default.
- W2119625222 cites W1923086194 @default.
- W2119625222 cites W1973349126 @default.
- W2119625222 cites W1981229978 @default.
- W2119625222 cites W1989299822 @default.
- W2119625222 cites W2000218703 @default.
- W2119625222 cites W2008411455 @default.
- W2119625222 cites W2011275708 @default.
- W2119625222 cites W2030335929 @default.
- W2119625222 cites W2031136928 @default.
- W2119625222 cites W2033375875 @default.
- W2119625222 cites W2038961236 @default.
- W2119625222 cites W2039987373 @default.
- W2119625222 cites W2059397921 @default.
- W2119625222 cites W207791811 @default.
- W2119625222 cites W2100094462 @default.
- W2119625222 cites W2104521350 @default.
- W2119625222 cites W2105297496 @default.
- W2119625222 cites W2110472911 @default.
- W2119625222 cites W2114872842 @default.
- W2119625222 cites W2121544545 @default.
- W2119625222 cites W2133406706 @default.
- W2119625222 cites W2139226057 @default.
- W2119625222 cites W2147063947 @default.
- W2119625222 cites W2152337355 @default.
- W2119625222 cites W2157043395 @default.
- W2119625222 cites W2158958532 @default.
- W2119625222 cites W2161140570 @default.
- W2119625222 cites W2166354753 @default.
- W2119625222 cites W2317881548 @default.
- W2119625222 cites W2414348319 @default.
- W2119625222 cites W265569993 @default.
- W2119625222 cites W3101533025 @default.
- W2119625222 cites W4301852473 @default.
- W2119625222 doi "https://doi.org/10.1016/j.metabol.2015.07.004" @default.
- W2119625222 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26271139" @default.
- W2119625222 hasPublicationYear "2015" @default.
- W2119625222 type Work @default.
- W2119625222 sameAs 2119625222 @default.
- W2119625222 citedByCount "8" @default.
- W2119625222 countsByYear W21196252222017 @default.
- W2119625222 countsByYear W21196252222018 @default.
- W2119625222 countsByYear W21196252222019 @default.
- W2119625222 countsByYear W21196252222020 @default.
- W2119625222 crossrefType "journal-article" @default.
- W2119625222 hasAuthorship W2119625222A5000618841 @default.
- W2119625222 hasAuthorship W2119625222A5009293856 @default.
- W2119625222 hasAuthorship W2119625222A5026900535 @default.
- W2119625222 hasAuthorship W2119625222A5053275390 @default.
- W2119625222 hasAuthorship W2119625222A5083895460 @default.
- W2119625222 hasConcept C105795698 @default.
- W2119625222 hasConcept C126322002 @default.
- W2119625222 hasConcept C134018914 @default.
- W2119625222 hasConcept C139572402 @default.
- W2119625222 hasConcept C185592680 @default.
- W2119625222 hasConcept C21565614 @default.
- W2119625222 hasConcept C27438332 @default.
- W2119625222 hasConcept C2776193436 @default.
- W2119625222 hasConcept C2777477808 @default.
- W2119625222 hasConcept C2778163477 @default.
- W2119625222 hasConcept C2780221984 @default.
- W2119625222 hasConcept C33923547 @default.
- W2119625222 hasConcept C42407357 @default.
- W2119625222 hasConcept C511355011 @default.
- W2119625222 hasConcept C60644358 @default.
- W2119625222 hasConcept C61427482 @default.
- W2119625222 hasConcept C71924100 @default.
- W2119625222 hasConcept C86803240 @default.
- W2119625222 hasConceptScore W2119625222C105795698 @default.
- W2119625222 hasConceptScore W2119625222C126322002 @default.
- W2119625222 hasConceptScore W2119625222C134018914 @default.
- W2119625222 hasConceptScore W2119625222C139572402 @default.
- W2119625222 hasConceptScore W2119625222C185592680 @default.
- W2119625222 hasConceptScore W2119625222C21565614 @default.
- W2119625222 hasConceptScore W2119625222C27438332 @default.
- W2119625222 hasConceptScore W2119625222C2776193436 @default.
- W2119625222 hasConceptScore W2119625222C2777477808 @default.
- W2119625222 hasConceptScore W2119625222C2778163477 @default.
- W2119625222 hasConceptScore W2119625222C2780221984 @default.
- W2119625222 hasConceptScore W2119625222C33923547 @default.
- W2119625222 hasConceptScore W2119625222C42407357 @default.
- W2119625222 hasConceptScore W2119625222C511355011 @default.
- W2119625222 hasConceptScore W2119625222C60644358 @default.
- W2119625222 hasConceptScore W2119625222C61427482 @default.
- W2119625222 hasConceptScore W2119625222C71924100 @default.
- W2119625222 hasConceptScore W2119625222C86803240 @default.
- W2119625222 hasIssue "10" @default.
- W2119625222 hasLocation W21196252221 @default.