Matches in SemOpenAlex for { <https://semopenalex.org/work/W2119666875> ?p ?o ?g. }
- W2119666875 endingPage "857" @default.
- W2119666875 startingPage "846" @default.
- W2119666875 abstract "The classic polynomial interpolation approach is used to derive a sampling theorem for the class of signals that are the response of systems described by differential equations with constant coefficients. In particular, the polynomial that interpolates the signal between the sampling points for increasing order will give increasing accuracy for stable one-sided sequences, if the sampling rate is at least six times the highest pole frequency (Bolgiano sampling rate [7]). The convergence is ensured also for nonstable poles that lie in a certain region of the complex plane. If, instead, we use the symmetrical polynomial approach, it is enough to sample at a rate that is just two times the highest pole frequency (Nyquist sampling rate), with some constraints on the real part of the poles. A bound for the error is derived for both cases and a comparison to the Shannon-Whittaker sampling theorem is presented." @default.
- W2119666875 created "2016-06-24" @default.
- W2119666875 creator A5082596053 @default.
- W2119666875 date "1986-08-01" @default.
- W2119666875 modified "2023-10-16" @default.
- W2119666875 title "Sampling theorem for polynomial interpolation" @default.
- W2119666875 cites W1485636186 @default.
- W2119666875 cites W1489216560 @default.
- W2119666875 cites W1932129481 @default.
- W2119666875 cites W1983348484 @default.
- W2119666875 cites W1986700039 @default.
- W2119666875 cites W1998424779 @default.
- W2119666875 cites W2009393645 @default.
- W2119666875 cites W2017588749 @default.
- W2119666875 cites W2019204967 @default.
- W2119666875 cites W2029780740 @default.
- W2119666875 cites W2047771057 @default.
- W2119666875 cites W2065015198 @default.
- W2119666875 cites W2070048887 @default.
- W2119666875 cites W2078908559 @default.
- W2119666875 cites W2081469452 @default.
- W2119666875 cites W2084052726 @default.
- W2119666875 cites W2087012806 @default.
- W2119666875 cites W2087375763 @default.
- W2119666875 cites W2111609347 @default.
- W2119666875 cites W2120034270 @default.
- W2119666875 cites W2126470886 @default.
- W2119666875 cites W2162153812 @default.
- W2119666875 cites W2496235544 @default.
- W2119666875 cites W3013942734 @default.
- W2119666875 cites W3160950571 @default.
- W2119666875 cites W6272393 @default.
- W2119666875 cites W641232363 @default.
- W2119666875 doi "https://doi.org/10.1109/tassp.1986.1164879" @default.
- W2119666875 hasPublicationYear "1986" @default.
- W2119666875 type Work @default.
- W2119666875 sameAs 2119666875 @default.
- W2119666875 citedByCount "4" @default.
- W2119666875 countsByYear W21196668752015 @default.
- W2119666875 crossrefType "journal-article" @default.
- W2119666875 hasAuthorship W2119666875A5082596053 @default.
- W2119666875 hasConcept C105795698 @default.
- W2119666875 hasConcept C126042441 @default.
- W2119666875 hasConcept C127162648 @default.
- W2119666875 hasConcept C134306372 @default.
- W2119666875 hasConcept C137800194 @default.
- W2119666875 hasConcept C140779682 @default.
- W2119666875 hasConcept C171836373 @default.
- W2119666875 hasConcept C17825722 @default.
- W2119666875 hasConcept C179117685 @default.
- W2119666875 hasConcept C199360897 @default.
- W2119666875 hasConcept C20326153 @default.
- W2119666875 hasConcept C2524010 @default.
- W2119666875 hasConcept C2777027219 @default.
- W2119666875 hasConcept C28826006 @default.
- W2119666875 hasConcept C28855332 @default.
- W2119666875 hasConcept C288623 @default.
- W2119666875 hasConcept C33923547 @default.
- W2119666875 hasConcept C41008148 @default.
- W2119666875 hasConcept C57869625 @default.
- W2119666875 hasConcept C65914096 @default.
- W2119666875 hasConcept C76155785 @default.
- W2119666875 hasConcept C88080468 @default.
- W2119666875 hasConcept C90119067 @default.
- W2119666875 hasConcept C94915269 @default.
- W2119666875 hasConceptScore W2119666875C105795698 @default.
- W2119666875 hasConceptScore W2119666875C126042441 @default.
- W2119666875 hasConceptScore W2119666875C127162648 @default.
- W2119666875 hasConceptScore W2119666875C134306372 @default.
- W2119666875 hasConceptScore W2119666875C137800194 @default.
- W2119666875 hasConceptScore W2119666875C140779682 @default.
- W2119666875 hasConceptScore W2119666875C171836373 @default.
- W2119666875 hasConceptScore W2119666875C17825722 @default.
- W2119666875 hasConceptScore W2119666875C179117685 @default.
- W2119666875 hasConceptScore W2119666875C199360897 @default.
- W2119666875 hasConceptScore W2119666875C20326153 @default.
- W2119666875 hasConceptScore W2119666875C2524010 @default.
- W2119666875 hasConceptScore W2119666875C2777027219 @default.
- W2119666875 hasConceptScore W2119666875C28826006 @default.
- W2119666875 hasConceptScore W2119666875C28855332 @default.
- W2119666875 hasConceptScore W2119666875C288623 @default.
- W2119666875 hasConceptScore W2119666875C33923547 @default.
- W2119666875 hasConceptScore W2119666875C41008148 @default.
- W2119666875 hasConceptScore W2119666875C57869625 @default.
- W2119666875 hasConceptScore W2119666875C65914096 @default.
- W2119666875 hasConceptScore W2119666875C76155785 @default.
- W2119666875 hasConceptScore W2119666875C88080468 @default.
- W2119666875 hasConceptScore W2119666875C90119067 @default.
- W2119666875 hasConceptScore W2119666875C94915269 @default.
- W2119666875 hasIssue "4" @default.
- W2119666875 hasLocation W21196668751 @default.
- W2119666875 hasOpenAccess W2119666875 @default.
- W2119666875 hasPrimaryLocation W21196668751 @default.
- W2119666875 hasRelatedWork W2054047433 @default.
- W2119666875 hasRelatedWork W2099673448 @default.
- W2119666875 hasRelatedWork W2112578300 @default.
- W2119666875 hasRelatedWork W2119666875 @default.
- W2119666875 hasRelatedWork W2124861257 @default.