Matches in SemOpenAlex for { <https://semopenalex.org/work/W2119691316> ?p ?o ?g. }
- W2119691316 endingPage "599" @default.
- W2119691316 startingPage "553" @default.
- W2119691316 abstract "holocrystalline under a wide spectrum of cooling regimes implies batch system. Instead, the CSDs of each system reflect a combination that cooling and crystallization can be uncoupled and considered of kinetic and dynamic influences on crystallization. Heterogeneous separately. This is tantamount to realizing that the Avrami number nucleation and annexation of small crystals by larger ones, enis large in most igneous systems. Crystallization automatically trainment of earlier grown and ripened crystals, rate of solidification adjusts through nucleation and growth to the cooling regime, and front advance, and protracted transit of a well-established mush all aspects of the ensuing crystal population reflect the relative roles column are some of the eVects revealed in the observed CSDs. There of nucleation and growth, which reflect the cooling regime. The may be an overall CSD evolution, reflecting the maturity of characteristic scales of crystal size, crystal number, and crys- the magmatic system, from simple straight nonkinked CSDs in tallization time are intimately tied to the characteristic rates of monogenetic systems to multiply kinked, piecewise continuous CSDs nucleation and growth, but it is the crystal size distributions (CSDs) in well-established systems such as Hawaii and Mount Etna. This that provide fundamental insight on the time variations of nucleation is not unlike the evolution of CSDs in some industrial systems. and growth and also on the dynamics of magmatic systems. Crystal Finally, the fact that comagmatic CSDs are not often captured size distributions for batch systems are calculated by employing evolving systematically through large changes in nucleation rates, the Johnson‐Mehl‐Avrami equation for crystallinity related to even in low crystallinity systems, may suggest that magma is always exponential variations in time of both nucleation and growth. The laced with high population densities of nuclei, supernuclei, and slope of the CSD is set by the diVerence a ‐ b, where a and b crystallites or clusters that together set the initial CSD at high are exponential constants describing, respectively, nucleation and characteristic population densities. Further evolution of the CSD growth. The batch CSD has constant slope and systematically occurs through sustained heterogeneous nucleation and rapid anmigrates to larger crystal size (L) with increasing crystallinity. The nealing at all crystallinities beginning at the liquidus itself and diminution in nucleation with loss of melt is reflected in the CSD operating under more or less steady (not exponentially increasing) at late times by a strong decrease in population density at small rates of nucleation. crystal sizes, which is rarely seen in igneous rocks themselves. Observed CSDs suggest that a ‐ b ~6‐10 and that b ~0. That is, growth rate is approximately constant and nucleation rate apparently increases exponentially with time. Correlations among CSD slope, intercept, and maximum crystal size for both batch and open systems suggest that certain diagnostic relations may be useful in interpreting the CSD of comagmatic sequences. These systematics are explored heuristically and through the detailed" @default.
- W2119691316 created "2016-06-24" @default.
- W2119691316 creator A5012670676 @default.
- W2119691316 date "1998-04-01" @default.
- W2119691316 modified "2023-10-14" @default.
- W2119691316 title "On the Interpretation of Crystal Size Distributions in Magmatic Systems" @default.
- W2119691316 cites W1534009691 @default.
- W2119691316 cites W1968392058 @default.
- W2119691316 cites W1970650508 @default.
- W2119691316 cites W1971348047 @default.
- W2119691316 cites W1972308291 @default.
- W2119691316 cites W1972463314 @default.
- W2119691316 cites W1985216590 @default.
- W2119691316 cites W1985254567 @default.
- W2119691316 cites W1985451813 @default.
- W2119691316 cites W1986303033 @default.
- W2119691316 cites W1989978501 @default.
- W2119691316 cites W1994919247 @default.
- W2119691316 cites W1998445895 @default.
- W2119691316 cites W1999098699 @default.
- W2119691316 cites W2013430744 @default.
- W2119691316 cites W2016987673 @default.
- W2119691316 cites W2017853565 @default.
- W2119691316 cites W2018380804 @default.
- W2119691316 cites W2022308914 @default.
- W2119691316 cites W2024908520 @default.
- W2119691316 cites W2026386308 @default.
- W2119691316 cites W2028245448 @default.
- W2119691316 cites W2032208445 @default.
- W2119691316 cites W2033034443 @default.
- W2119691316 cites W2039261439 @default.
- W2119691316 cites W2045769202 @default.
- W2119691316 cites W2045965902 @default.
- W2119691316 cites W2046643421 @default.
- W2119691316 cites W2052449246 @default.
- W2119691316 cites W2053582679 @default.
- W2119691316 cites W2056320034 @default.
- W2119691316 cites W2070524550 @default.
- W2119691316 cites W2073443556 @default.
- W2119691316 cites W2077216152 @default.
- W2119691316 cites W2091791425 @default.
- W2119691316 cites W2156723456 @default.
- W2119691316 cites W2161484974 @default.
- W2119691316 cites W2319500769 @default.
- W2119691316 cites W2334515619 @default.
- W2119691316 cites W4253530628 @default.
- W2119691316 cites W83058367 @default.
- W2119691316 doi "https://doi.org/10.1093/petroj/39.4.553" @default.
- W2119691316 hasPublicationYear "1998" @default.
- W2119691316 type Work @default.
- W2119691316 sameAs 2119691316 @default.
- W2119691316 citedByCount "334" @default.
- W2119691316 countsByYear W21196913162012 @default.
- W2119691316 countsByYear W21196913162013 @default.
- W2119691316 countsByYear W21196913162014 @default.
- W2119691316 countsByYear W21196913162015 @default.
- W2119691316 countsByYear W21196913162016 @default.
- W2119691316 countsByYear W21196913162017 @default.
- W2119691316 countsByYear W21196913162018 @default.
- W2119691316 countsByYear W21196913162019 @default.
- W2119691316 countsByYear W21196913162020 @default.
- W2119691316 countsByYear W21196913162021 @default.
- W2119691316 countsByYear W21196913162022 @default.
- W2119691316 countsByYear W21196913162023 @default.
- W2119691316 crossrefType "journal-article" @default.
- W2119691316 hasAuthorship W2119691316A5012670676 @default.
- W2119691316 hasBestOaLocation W21196913161 @default.
- W2119691316 hasConcept C127313418 @default.
- W2119691316 hasConcept C17409809 @default.
- W2119691316 hasConcept C1965285 @default.
- W2119691316 hasConcept C199289684 @default.
- W2119691316 hasConcept C199360897 @default.
- W2119691316 hasConcept C2781285689 @default.
- W2119691316 hasConcept C41008148 @default.
- W2119691316 hasConcept C527412718 @default.
- W2119691316 hasConcept C5900021 @default.
- W2119691316 hasConceptScore W2119691316C127313418 @default.
- W2119691316 hasConceptScore W2119691316C17409809 @default.
- W2119691316 hasConceptScore W2119691316C1965285 @default.
- W2119691316 hasConceptScore W2119691316C199289684 @default.
- W2119691316 hasConceptScore W2119691316C199360897 @default.
- W2119691316 hasConceptScore W2119691316C2781285689 @default.
- W2119691316 hasConceptScore W2119691316C41008148 @default.
- W2119691316 hasConceptScore W2119691316C527412718 @default.
- W2119691316 hasConceptScore W2119691316C5900021 @default.
- W2119691316 hasIssue "4" @default.
- W2119691316 hasLocation W21196913161 @default.
- W2119691316 hasLocation W21196913162 @default.
- W2119691316 hasOpenAccess W2119691316 @default.
- W2119691316 hasPrimaryLocation W21196913161 @default.
- W2119691316 hasRelatedWork W1967557881 @default.
- W2119691316 hasRelatedWork W2001240289 @default.
- W2119691316 hasRelatedWork W2349947565 @default.
- W2119691316 hasRelatedWork W2350862504 @default.
- W2119691316 hasRelatedWork W2358025071 @default.
- W2119691316 hasRelatedWork W2368908036 @default.
- W2119691316 hasRelatedWork W2380934447 @default.
- W2119691316 hasRelatedWork W2391232661 @default.