Matches in SemOpenAlex for { <https://semopenalex.org/work/W2119821054> ?p ?o ?g. }
- W2119821054 endingPage "242" @default.
- W2119821054 startingPage "224" @default.
- W2119821054 abstract "We present a new numerical method to solve the heterogeneous anelastic, seismic wave equations with arbitrary high order accuracy in space and time on 3-D unstructured tetrahedral meshes. Using the velocity–stress formulation provides a linear hyperbolic system of equations with source terms that is completed by additional equations for the anelastic functions including the strain history of the material. These additional equations result from the rheological model of the generalized Maxwell body and permit the incorporation of realistic attenuation properties of viscoelastic material accounting for the behaviour of elastic solids and viscous fluids. The proposed method combines the Discontinuous Galerkin (DG) finite element (FE) method with the ADER approach using Arbitrary high order DERivatives for flux calculations. The DG approach, in contrast to classical FE methods, uses a piecewise polynomial approximation of the numerical solution which allows for discontinuities at element interfaces. Therefore, the well-established theory of numerical fluxes across element interfaces obtained by the solution of Riemann problems can be applied as in the finite volume framework. The main idea of the ADER time integration approach is a Taylor expansion in time in which all time derivatives are replaced by space derivatives using the so-called Cauchy—Kovalewski procedure which makes extensive use of the governing PDE. Due to the ADER time integration technique the same approximation order in space and time is achieved automatically and the method is a one-step scheme advancing the solution for one time step without intermediate stages. To this end, we introduce a new unrolled recursive algorithm for efficiently computing the Cauchy–Kovalewski procedure by making use of the sparsity of the system matrices. The numerical convergence analysis demonstrates that the new schemes provide very high order accuracy even on unstructured tetrahedral meshes while computational cost and storage space for a desired accuracy can be reduced when applying higher degree approximation polynomials. In addition, we investigate the increase in computing time, when the number of relaxation mechanisms due to the generalized Maxwell body are increased. An application to a well-acknowledged test case and comparisons with analytic and reference solutions, obtained by different well-established numerical methods, confirm the performance of the proposed method. Therefore, the development of the highly accurate ADER—DG approach for tetrahedral meshes including viscoelastic material provides a novel, flexible and efficient numerical technique to approach 3-D wave propagation problems including realistic attenuation and complex geometry." @default.
- W2119821054 created "2016-06-24" @default.
- W2119821054 creator A5019260523 @default.
- W2119821054 creator A5051559583 @default.
- W2119821054 creator A5073614233 @default.
- W2119821054 creator A5088160421 @default.
- W2119821054 date "2007-01-01" @default.
- W2119821054 modified "2023-10-12" @default.
- W2119821054 title "An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes - III. Viscoelastic attenuation" @default.
- W2119821054 cites W1513760541 @default.
- W2119821054 cites W1537224157 @default.
- W2119821054 cites W191599861 @default.
- W2119821054 cites W1977341879 @default.
- W2119821054 cites W1984280619 @default.
- W2119821054 cites W2017511530 @default.
- W2119821054 cites W2046625524 @default.
- W2119821054 cites W2077248369 @default.
- W2119821054 cites W2086118501 @default.
- W2119821054 cites W2100779421 @default.
- W2119821054 cites W2106475394 @default.
- W2119821054 cites W2121857375 @default.
- W2119821054 cites W2127563055 @default.
- W2119821054 cites W2128748091 @default.
- W2119821054 cites W2138275892 @default.
- W2119821054 cites W2149697434 @default.
- W2119821054 cites W2151650764 @default.
- W2119821054 cites W2151746296 @default.
- W2119821054 cites W2154957056 @default.
- W2119821054 cites W2155146931 @default.
- W2119821054 cites W2157430242 @default.
- W2119821054 cites W2318308072 @default.
- W2119821054 cites W4214751139 @default.
- W2119821054 cites W4231432112 @default.
- W2119821054 cites W4231590294 @default.
- W2119821054 doi "https://doi.org/10.1111/j.1365-246x.2006.03193.x" @default.
- W2119821054 hasPublicationYear "2007" @default.
- W2119821054 type Work @default.
- W2119821054 sameAs 2119821054 @default.
- W2119821054 citedByCount "137" @default.
- W2119821054 countsByYear W21198210542012 @default.
- W2119821054 countsByYear W21198210542013 @default.
- W2119821054 countsByYear W21198210542014 @default.
- W2119821054 countsByYear W21198210542015 @default.
- W2119821054 countsByYear W21198210542016 @default.
- W2119821054 countsByYear W21198210542017 @default.
- W2119821054 countsByYear W21198210542018 @default.
- W2119821054 countsByYear W21198210542019 @default.
- W2119821054 countsByYear W21198210542020 @default.
- W2119821054 countsByYear W21198210542021 @default.
- W2119821054 countsByYear W21198210542022 @default.
- W2119821054 countsByYear W21198210542023 @default.
- W2119821054 crossrefType "journal-article" @default.
- W2119821054 hasAuthorship W2119821054A5019260523 @default.
- W2119821054 hasAuthorship W2119821054A5051559583 @default.
- W2119821054 hasAuthorship W2119821054A5073614233 @default.
- W2119821054 hasAuthorship W2119821054A5088160421 @default.
- W2119821054 hasBestOaLocation W21198210541 @default.
- W2119821054 hasConcept C121332964 @default.
- W2119821054 hasConcept C134306372 @default.
- W2119821054 hasConcept C135628077 @default.
- W2119821054 hasConcept C15627037 @default.
- W2119821054 hasConcept C164660894 @default.
- W2119821054 hasConcept C186541917 @default.
- W2119821054 hasConcept C186899397 @default.
- W2119821054 hasConcept C28826006 @default.
- W2119821054 hasConcept C33923547 @default.
- W2119821054 hasConcept C48753275 @default.
- W2119821054 hasConcept C90119067 @default.
- W2119821054 hasConcept C92244383 @default.
- W2119821054 hasConcept C97355855 @default.
- W2119821054 hasConceptScore W2119821054C121332964 @default.
- W2119821054 hasConceptScore W2119821054C134306372 @default.
- W2119821054 hasConceptScore W2119821054C135628077 @default.
- W2119821054 hasConceptScore W2119821054C15627037 @default.
- W2119821054 hasConceptScore W2119821054C164660894 @default.
- W2119821054 hasConceptScore W2119821054C186541917 @default.
- W2119821054 hasConceptScore W2119821054C186899397 @default.
- W2119821054 hasConceptScore W2119821054C28826006 @default.
- W2119821054 hasConceptScore W2119821054C33923547 @default.
- W2119821054 hasConceptScore W2119821054C48753275 @default.
- W2119821054 hasConceptScore W2119821054C90119067 @default.
- W2119821054 hasConceptScore W2119821054C92244383 @default.
- W2119821054 hasConceptScore W2119821054C97355855 @default.
- W2119821054 hasIssue "1" @default.
- W2119821054 hasLocation W21198210541 @default.
- W2119821054 hasOpenAccess W2119821054 @default.
- W2119821054 hasPrimaryLocation W21198210541 @default.
- W2119821054 hasRelatedWork W1972096828 @default.
- W2119821054 hasRelatedWork W2040975642 @default.
- W2119821054 hasRelatedWork W2120874885 @default.
- W2119821054 hasRelatedWork W2162026849 @default.
- W2119821054 hasRelatedWork W2394687667 @default.
- W2119821054 hasRelatedWork W2529137940 @default.
- W2119821054 hasRelatedWork W2953303953 @default.
- W2119821054 hasRelatedWork W2982093746 @default.
- W2119821054 hasRelatedWork W3043435143 @default.
- W2119821054 hasRelatedWork W4302048708 @default.
- W2119821054 hasVolume "168" @default.