Matches in SemOpenAlex for { <https://semopenalex.org/work/W2119942013> ?p ?o ?g. }
- W2119942013 endingPage "143" @default.
- W2119942013 startingPage "129" @default.
- W2119942013 abstract "In the present contribution we propose two recently developed classification algorithms for the analysis of mass-spectrometric data—the supervised neural gas and the fuzzy-labeled self-organizing map. The algorithms are inherently regularizing, which is recommended, for these spectral data because of its high dimensionality and the sparseness for specific problems. The algorithms are both prototype-based such that the principle of characteristic representants is realized. This leads to an easy interpretation of the generated classifcation model. Further, the fuzzy-labeled self-organizing map is able to process uncertainty in data, and classification results can be obtained as fuzzy decisions. Moreover, this fuzzy classification together with the property of topographic mapping offers the possibility of class similarity detection, which can be used for class visualization. We demonstrate the power of both methods for two exemplary examples: the classification of bacteria (listeria types) and neoplastic and non-neoplastic cell populations in breast cancer tissue sections." @default.
- W2119942013 created "2016-06-24" @default.
- W2119942013 creator A5004196006 @default.
- W2119942013 creator A5027248793 @default.
- W2119942013 creator A5043370339 @default.
- W2119942013 creator A5074211261 @default.
- W2119942013 creator A5091180862 @default.
- W2119942013 date "2007-09-28" @default.
- W2119942013 modified "2023-10-18" @default.
- W2119942013 title "Classification of mass-spectrometric data in clinical proteomics using learning vector quantization methods" @default.
- W2119942013 cites W1482139961 @default.
- W2119942013 cites W1486158543 @default.
- W2119942013 cites W1489002364 @default.
- W2119942013 cites W1498183065 @default.
- W2119942013 cites W1503049134 @default.
- W2119942013 cites W1509027411 @default.
- W2119942013 cites W1540550673 @default.
- W2119942013 cites W1554663460 @default.
- W2119942013 cites W1563088657 @default.
- W2119942013 cites W1567755388 @default.
- W2119942013 cites W1589969357 @default.
- W2119942013 cites W1597507633 @default.
- W2119942013 cites W1617610339 @default.
- W2119942013 cites W1663973292 @default.
- W2119942013 cites W1664167130 @default.
- W2119942013 cites W1680622244 @default.
- W2119942013 cites W1990784125 @default.
- W2119942013 cites W1995496685 @default.
- W2119942013 cites W2021699171 @default.
- W2119942013 cites W2039115800 @default.
- W2119942013 cites W2047286442 @default.
- W2119942013 cites W2055524657 @default.
- W2119942013 cites W2057526619 @default.
- W2119942013 cites W2067509137 @default.
- W2119942013 cites W2084562574 @default.
- W2119942013 cites W2094150678 @default.
- W2119942013 cites W2112142982 @default.
- W2119942013 cites W2123749980 @default.
- W2119942013 cites W2125134203 @default.
- W2119942013 cites W2138754805 @default.
- W2119942013 cites W2144004768 @default.
- W2119942013 cites W2146077544 @default.
- W2119942013 cites W2150864321 @default.
- W2119942013 cites W2166322089 @default.
- W2119942013 cites W2170966581 @default.
- W2119942013 cites W2176720124 @default.
- W2119942013 cites W2799148064 @default.
- W2119942013 cites W3017143921 @default.
- W2119942013 cites W3119651796 @default.
- W2119942013 cites W3123606858 @default.
- W2119942013 cites W570854018 @default.
- W2119942013 cites W615088007 @default.
- W2119942013 cites W2275031339 @default.
- W2119942013 cites W2464067994 @default.
- W2119942013 doi "https://doi.org/10.1093/bib/bbn009" @default.
- W2119942013 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18334515" @default.
- W2119942013 hasPublicationYear "2007" @default.
- W2119942013 type Work @default.
- W2119942013 sameAs 2119942013 @default.
- W2119942013 citedByCount "43" @default.
- W2119942013 countsByYear W21199420132012 @default.
- W2119942013 countsByYear W21199420132014 @default.
- W2119942013 countsByYear W21199420132015 @default.
- W2119942013 countsByYear W21199420132017 @default.
- W2119942013 countsByYear W21199420132018 @default.
- W2119942013 countsByYear W21199420132019 @default.
- W2119942013 countsByYear W21199420132020 @default.
- W2119942013 countsByYear W21199420132022 @default.
- W2119942013 crossrefType "journal-article" @default.
- W2119942013 hasAuthorship W2119942013A5004196006 @default.
- W2119942013 hasAuthorship W2119942013A5027248793 @default.
- W2119942013 hasAuthorship W2119942013A5043370339 @default.
- W2119942013 hasAuthorship W2119942013A5074211261 @default.
- W2119942013 hasAuthorship W2119942013A5091180862 @default.
- W2119942013 hasBestOaLocation W21199420131 @default.
- W2119942013 hasConcept C111030470 @default.
- W2119942013 hasConcept C124101348 @default.
- W2119942013 hasConcept C153180895 @default.
- W2119942013 hasConcept C154945302 @default.
- W2119942013 hasConcept C175202392 @default.
- W2119942013 hasConcept C199833920 @default.
- W2119942013 hasConcept C36464697 @default.
- W2119942013 hasConcept C40567965 @default.
- W2119942013 hasConcept C41008148 @default.
- W2119942013 hasConcept C50644808 @default.
- W2119942013 hasConcept C58166 @default.
- W2119942013 hasConcept C73555534 @default.
- W2119942013 hasConcept C90322556 @default.
- W2119942013 hasConceptScore W2119942013C111030470 @default.
- W2119942013 hasConceptScore W2119942013C124101348 @default.
- W2119942013 hasConceptScore W2119942013C153180895 @default.
- W2119942013 hasConceptScore W2119942013C154945302 @default.
- W2119942013 hasConceptScore W2119942013C175202392 @default.
- W2119942013 hasConceptScore W2119942013C199833920 @default.
- W2119942013 hasConceptScore W2119942013C36464697 @default.
- W2119942013 hasConceptScore W2119942013C40567965 @default.
- W2119942013 hasConceptScore W2119942013C41008148 @default.
- W2119942013 hasConceptScore W2119942013C50644808 @default.