Matches in SemOpenAlex for { <https://semopenalex.org/work/W2120070171> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2120070171 abstract "It is known that internal vibrations decrease the performance characteristics and life time of mechanisms, and in some cases they even may lead to mechanical failures. In motion systems used in precision technology (wafer scanners, scanners, pick-and-place machines for production of PCBs, wire-bonders etc.), internal vibrations limit the performance parameters. The vibrations are still a challenge for the generally accepted design approach at present time, which is heading towards higher system accuracy, speed and throughput. Currently, the design approach to precision positioning applications places the dominant vibration frequencies of the mechanical parts several times higher than the required control bandwidth. However, these high mechanical frequencies are reached by constructing the mechanical parts with high stiffness, often at the cost of relatively high mass. To eliminate the negative consequences of the classical methodology, another design philosophy is used in this thesis. A three-disciplinary lightweight positioning approach (control, mechanics and electromechanics) focuses on mass reduction of the moving parts of motion systems. For this purpose, a principle based on over-actuation is used, which allows designing a lighter overall kinematical structure (force-path). In order to evaluate this approach on a general level, benchmarks for classical and lightweight positioning systems are proposed, namely, a so-called stiff beam system and a flexible beam system. The main focus of the thesis is on the design and optimization of a novel Lorentz force actuator for a lightweight positioning system that can also be applied in other precision technology applications. The objective is to reach the maximum mass reduction of the flexible beam system. In order to evaluate and design the novel actuator, a comprehensive static electromagnetic analysis of the actuator is elaborated. The resulting analytical model is based on a magnetic equivalent circuit, which has been identified by means of preliminary finite element calculations. The analytical model plays an essential role in the complete design. It is later used for the optimal dimensioning of the actuator for required performance specifications. Then, a numerical finite element model is built and the results are used to evaluate the accuracy of the analytical model and to identify parasitic forces and torques of the actuator. Another important aspect that determines the operating conditions is the thermal behavior of the actuator. It is also described analytically by a thermal lumped parameter model. The suggested description of the heat transfer captures the static as well as the dynamic behavior. To determine the optimal dimensions of the actuator an optimization approach, which uses the magnetic equivalent circuit and the thermal analytical model, is proposed. In terms of nonlinear programming, the problem statement consists of finding the dimensions of the actuator with minimal mass, where given force and torque are used as constraints. Because of the nonlinear nature of the problem the optimal solution is found numerically. The resulting optimal actuator incorporating two degrees of freedom (DoF) has 22.2% less mass than two equivalent 1-DoF actuators. It may be concluded, based on simulation and measurement results, that the proposed actuator can be analyzed with sufficient accuracy by the presented methods. The invented short-stroke actuator uniquely combines two controlled degrees of freedom: translational and rotational. This combination ensures that the mass of the actuators used in the flexible beam system has been reduced compared to that in the stiff beam system. The actuators support the flexible beam system in a way that introduces less disturbances. Meanwhile, the controllability of higher order vibration modes and, consequently, the global performance are improved. Two lightweight positioning systems were built, one with three 1-DoF actuators and the other with two novel Lorentz force actuators. In both setups the flexible beam has its mass reduced to 38.6% of that of the stiff beam. The total mass of the actuators in both cases is almost the same, but the setup with the innovative actuators allows to control the beam with two forces and two torques, while the setup with three 1-DoF actuators produces only three controlled forces" @default.
- W2120070171 created "2016-06-24" @default.
- W2120070171 creator A5029412147 @default.
- W2120070171 date "2006-01-01" @default.
- W2120070171 modified "2023-09-25" @default.
- W2120070171 title "Lightweight positioning : design and optimization of an actuator with two controlled degrees of freedom" @default.
- W2120070171 cites W1496921577 @default.
- W2120070171 cites W1562107779 @default.
- W2120070171 cites W1567689484 @default.
- W2120070171 cites W1595609644 @default.
- W2120070171 cites W1607306302 @default.
- W2120070171 cites W1980408335 @default.
- W2120070171 cites W1997831457 @default.
- W2120070171 cites W2022063992 @default.
- W2120070171 cites W2060687189 @default.
- W2120070171 cites W2108856054 @default.
- W2120070171 cites W2120850841 @default.
- W2120070171 cites W2139175431 @default.
- W2120070171 cites W2142568390 @default.
- W2120070171 cites W2152442106 @default.
- W2120070171 cites W2163708018 @default.
- W2120070171 cites W2169188825 @default.
- W2120070171 cites W2535747147 @default.
- W2120070171 cites W2546017285 @default.
- W2120070171 cites W582326839 @default.
- W2120070171 cites W2905643939 @default.
- W2120070171 doi "https://doi.org/10.6100/ir613431" @default.
- W2120070171 hasPublicationYear "2006" @default.
- W2120070171 type Work @default.
- W2120070171 sameAs 2120070171 @default.
- W2120070171 citedByCount "4" @default.
- W2120070171 countsByYear W21200701712012 @default.
- W2120070171 countsByYear W21200701712015 @default.
- W2120070171 crossrefType "journal-article" @default.
- W2120070171 hasAuthorship W2120070171A5029412147 @default.
- W2120070171 hasConcept C119599485 @default.
- W2120070171 hasConcept C121332964 @default.
- W2120070171 hasConcept C127413603 @default.
- W2120070171 hasConcept C133731056 @default.
- W2120070171 hasConcept C154945302 @default.
- W2120070171 hasConcept C171912257 @default.
- W2120070171 hasConcept C172707124 @default.
- W2120070171 hasConcept C198394728 @default.
- W2120070171 hasConcept C24890656 @default.
- W2120070171 hasConcept C2775924081 @default.
- W2120070171 hasConcept C2778603505 @default.
- W2120070171 hasConcept C2779372316 @default.
- W2120070171 hasConcept C41008148 @default.
- W2120070171 hasConcept C44154836 @default.
- W2120070171 hasConcept C47446073 @default.
- W2120070171 hasConcept C62611344 @default.
- W2120070171 hasConcept C66938386 @default.
- W2120070171 hasConcept C78519656 @default.
- W2120070171 hasConceptScore W2120070171C119599485 @default.
- W2120070171 hasConceptScore W2120070171C121332964 @default.
- W2120070171 hasConceptScore W2120070171C127413603 @default.
- W2120070171 hasConceptScore W2120070171C133731056 @default.
- W2120070171 hasConceptScore W2120070171C154945302 @default.
- W2120070171 hasConceptScore W2120070171C171912257 @default.
- W2120070171 hasConceptScore W2120070171C172707124 @default.
- W2120070171 hasConceptScore W2120070171C198394728 @default.
- W2120070171 hasConceptScore W2120070171C24890656 @default.
- W2120070171 hasConceptScore W2120070171C2775924081 @default.
- W2120070171 hasConceptScore W2120070171C2778603505 @default.
- W2120070171 hasConceptScore W2120070171C2779372316 @default.
- W2120070171 hasConceptScore W2120070171C41008148 @default.
- W2120070171 hasConceptScore W2120070171C44154836 @default.
- W2120070171 hasConceptScore W2120070171C47446073 @default.
- W2120070171 hasConceptScore W2120070171C62611344 @default.
- W2120070171 hasConceptScore W2120070171C66938386 @default.
- W2120070171 hasConceptScore W2120070171C78519656 @default.
- W2120070171 hasLocation W21200701711 @default.
- W2120070171 hasOpenAccess W2120070171 @default.
- W2120070171 hasPrimaryLocation W21200701711 @default.
- W2120070171 hasRelatedWork W1587420641 @default.
- W2120070171 hasRelatedWork W17723438 @default.
- W2120070171 hasRelatedWork W1848534568 @default.
- W2120070171 hasRelatedWork W1975864253 @default.
- W2120070171 hasRelatedWork W1989175621 @default.
- W2120070171 hasRelatedWork W2027620229 @default.
- W2120070171 hasRelatedWork W2067263923 @default.
- W2120070171 hasRelatedWork W2186274581 @default.
- W2120070171 hasRelatedWork W2268581170 @default.
- W2120070171 hasRelatedWork W2461573479 @default.
- W2120070171 hasRelatedWork W2547043299 @default.
- W2120070171 hasRelatedWork W2579922700 @default.
- W2120070171 hasRelatedWork W2587982194 @default.
- W2120070171 hasRelatedWork W2802328047 @default.
- W2120070171 hasRelatedWork W2802664998 @default.
- W2120070171 hasRelatedWork W3128207078 @default.
- W2120070171 hasRelatedWork W944473046 @default.
- W2120070171 hasRelatedWork W2092006060 @default.
- W2120070171 hasRelatedWork W2186432778 @default.
- W2120070171 hasRelatedWork W2606471819 @default.
- W2120070171 isParatext "false" @default.
- W2120070171 isRetracted "false" @default.
- W2120070171 magId "2120070171" @default.
- W2120070171 workType "article" @default.