Matches in SemOpenAlex for { <https://semopenalex.org/work/W2120228710> ?p ?o ?g. }
- W2120228710 endingPage "5456" @default.
- W2120228710 startingPage "5449" @default.
- W2120228710 abstract "The density functional theory of freezing is used to study the liquid to crystal phase transition in the hardsphere and Lennard-Jones systems. An important step in the calculation is the parametrization of the solid phase average single particle density ρ(r). In this work two popular parametrizations are compared. The first method is a general Fourier decomposition of the periodic solid density in which the amplitude of each (non-symmetry-related) Fourier component is treated as an independent parameter. The second parametrization, which is more restrictive but easier to implement, approximates the solid density as a sum of Gaussian peaks centered at the sites of a periodic lattice. The two methods give essentially identical results for the phase diagrams for the two systems studied, but the crystal density predicted by the Fourier method exhibits significant anisotropies which are excluded from the Gaussian representation by construction." @default.
- W2120228710 created "2016-06-24" @default.
- W2120228710 creator A5022784249 @default.
- W2120228710 creator A5030903328 @default.
- W2120228710 creator A5050379603 @default.
- W2120228710 date "1987-11-01" @default.
- W2120228710 modified "2023-10-16" @default.
- W2120228710 title "Density functional theory of freezing: Analysis of crystal density" @default.
- W2120228710 cites W1969452546 @default.
- W2120228710 cites W1972067177 @default.
- W2120228710 cites W1976663498 @default.
- W2120228710 cites W1978539460 @default.
- W2120228710 cites W1982447384 @default.
- W2120228710 cites W1986982278 @default.
- W2120228710 cites W1992470331 @default.
- W2120228710 cites W1998218867 @default.
- W2120228710 cites W1998297131 @default.
- W2120228710 cites W2000883098 @default.
- W2120228710 cites W2001408585 @default.
- W2120228710 cites W2006984843 @default.
- W2120228710 cites W2007898205 @default.
- W2120228710 cites W2008398947 @default.
- W2120228710 cites W2014631312 @default.
- W2120228710 cites W2016877494 @default.
- W2120228710 cites W2018862880 @default.
- W2120228710 cites W2021374437 @default.
- W2120228710 cites W2024702192 @default.
- W2120228710 cites W2028548328 @default.
- W2120228710 cites W2033254990 @default.
- W2120228710 cites W2035932705 @default.
- W2120228710 cites W2038466167 @default.
- W2120228710 cites W2043837530 @default.
- W2120228710 cites W2054116382 @default.
- W2120228710 cites W2058189331 @default.
- W2120228710 cites W2058409774 @default.
- W2120228710 cites W2064608097 @default.
- W2120228710 cites W2065351060 @default.
- W2120228710 cites W2067605292 @default.
- W2120228710 cites W2071130270 @default.
- W2120228710 cites W2071502355 @default.
- W2120228710 cites W2082631161 @default.
- W2120228710 cites W2082710031 @default.
- W2120228710 cites W2083432154 @default.
- W2120228710 cites W2085418634 @default.
- W2120228710 cites W2088905004 @default.
- W2120228710 cites W2089468573 @default.
- W2120228710 cites W2112388439 @default.
- W2120228710 cites W2117063147 @default.
- W2120228710 cites W2145347951 @default.
- W2120228710 cites W2157168428 @default.
- W2120228710 cites W3035170977 @default.
- W2120228710 doi "https://doi.org/10.1063/1.453663" @default.
- W2120228710 hasPublicationYear "1987" @default.
- W2120228710 type Work @default.
- W2120228710 sameAs 2120228710 @default.
- W2120228710 citedByCount "74" @default.
- W2120228710 countsByYear W21202287102012 @default.
- W2120228710 countsByYear W21202287102013 @default.
- W2120228710 countsByYear W21202287102014 @default.
- W2120228710 countsByYear W21202287102015 @default.
- W2120228710 countsByYear W21202287102016 @default.
- W2120228710 countsByYear W21202287102023 @default.
- W2120228710 crossrefType "journal-article" @default.
- W2120228710 hasAuthorship W2120228710A5022784249 @default.
- W2120228710 hasAuthorship W2120228710A5030903328 @default.
- W2120228710 hasAuthorship W2120228710A5050379603 @default.
- W2120228710 hasBestOaLocation W21202287101 @default.
- W2120228710 hasConcept C102519508 @default.
- W2120228710 hasConcept C121332964 @default.
- W2120228710 hasConcept C121864883 @default.
- W2120228710 hasConcept C149288129 @default.
- W2120228710 hasConcept C152365726 @default.
- W2120228710 hasConcept C163716315 @default.
- W2120228710 hasConcept C199360897 @default.
- W2120228710 hasConcept C202887219 @default.
- W2120228710 hasConcept C24890656 @default.
- W2120228710 hasConcept C2781204021 @default.
- W2120228710 hasConcept C2781285689 @default.
- W2120228710 hasConcept C41008148 @default.
- W2120228710 hasConcept C44280652 @default.
- W2120228710 hasConcept C62520636 @default.
- W2120228710 hasConcept C74902906 @default.
- W2120228710 hasConceptScore W2120228710C102519508 @default.
- W2120228710 hasConceptScore W2120228710C121332964 @default.
- W2120228710 hasConceptScore W2120228710C121864883 @default.
- W2120228710 hasConceptScore W2120228710C149288129 @default.
- W2120228710 hasConceptScore W2120228710C152365726 @default.
- W2120228710 hasConceptScore W2120228710C163716315 @default.
- W2120228710 hasConceptScore W2120228710C199360897 @default.
- W2120228710 hasConceptScore W2120228710C202887219 @default.
- W2120228710 hasConceptScore W2120228710C24890656 @default.
- W2120228710 hasConceptScore W2120228710C2781204021 @default.
- W2120228710 hasConceptScore W2120228710C2781285689 @default.
- W2120228710 hasConceptScore W2120228710C41008148 @default.
- W2120228710 hasConceptScore W2120228710C44280652 @default.
- W2120228710 hasConceptScore W2120228710C62520636 @default.
- W2120228710 hasConceptScore W2120228710C74902906 @default.
- W2120228710 hasIssue "9" @default.