Matches in SemOpenAlex for { <https://semopenalex.org/work/W2120237358> ?p ?o ?g. }
- W2120237358 endingPage "pyv052" @default.
- W2120237358 startingPage "pyv052" @default.
- W2120237358 abstract "There are no objective, biological markers that can robustly predict methylphenidate response in attention deficit hyperactivity disorder. This study aimed to examine whether applying machine learning approaches to pretreatment demographic, clinical questionnaire, environmental, neuropsychological, neuroimaging, and genetic information can predict therapeutic response following methylphenidate administration. The present study included 83 attention deficit hyperactivity disorder youth. At baseline, parents completed the ADHD Rating Scale-IV and Disruptive Behavior Disorder rating scale, and participants undertook the continuous performance test, Stroop color word test, and resting-state functional MRI scans. The dopamine transporter gene, dopamine D4 receptor gene, alpha-2A adrenergic receptor gene (ADRA2A) and norepinephrine transporter gene polymorphisms, and blood lead and urine cotinine levels were also measured. The participants were enrolled in an 8-week, open-label trial of methylphenidate. Four different machine learning algorithms were used for data analysis. Support vector machine classification accuracy was 84.6% (area under receiver operating characteristic curve 0.84) for predicting methylphenidate response. The age, weight, ADRA2A MspI and DraI polymorphisms, lead level, Stroop color word test performance, and oppositional symptoms of Disruptive Behavior Disorder rating scale were identified as the most differentiating subset of features. Our results provide preliminary support to the translational development of support vector machine as an informative method that can assist in predicting treatment response in attention deficit hyperactivity disorder, though further work is required to provide enhanced levels of classification performance." @default.
- W2120237358 created "2016-06-24" @default.
- W2120237358 creator A5017759536 @default.
- W2120237358 creator A5048085375 @default.
- W2120237358 creator A5051015778 @default.
- W2120237358 date "2015-05-10" @default.
- W2120237358 modified "2023-10-06" @default.
- W2120237358 title "Predicting Methylphenidate Response in ADHD Using Machine Learning Approaches" @default.
- W2120237358 cites W1495850955 @default.
- W2120237358 cites W1934671287 @default.
- W2120237358 cites W1964989745 @default.
- W2120237358 cites W1969959732 @default.
- W2120237358 cites W1983302342 @default.
- W2120237358 cites W1984551285 @default.
- W2120237358 cites W1990134753 @default.
- W2120237358 cites W2001437285 @default.
- W2120237358 cites W2015928143 @default.
- W2120237358 cites W2017337590 @default.
- W2120237358 cites W2025956906 @default.
- W2120237358 cites W2028220258 @default.
- W2120237358 cites W2030902100 @default.
- W2120237358 cites W2032055170 @default.
- W2120237358 cites W2051809205 @default.
- W2120237358 cites W2054458317 @default.
- W2120237358 cites W2063404606 @default.
- W2120237358 cites W2068423179 @default.
- W2120237358 cites W2077465062 @default.
- W2120237358 cites W2084986023 @default.
- W2120237358 cites W2086694643 @default.
- W2120237358 cites W2089459114 @default.
- W2120237358 cites W2091027442 @default.
- W2120237358 cites W2091646494 @default.
- W2120237358 cites W2094661673 @default.
- W2120237358 cites W2103811520 @default.
- W2120237358 cites W2109413825 @default.
- W2120237358 cites W2112876062 @default.
- W2120237358 cites W2113922748 @default.
- W2120237358 cites W2117140276 @default.
- W2120237358 cites W2132175842 @default.
- W2120237358 cites W2133990480 @default.
- W2120237358 cites W2147055598 @default.
- W2120237358 cites W2151040995 @default.
- W2120237358 cites W2153600210 @default.
- W2120237358 cites W2914686075 @default.
- W2120237358 cites W4211216202 @default.
- W2120237358 doi "https://doi.org/10.1093/ijnp/pyv052" @default.
- W2120237358 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4756719" @default.
- W2120237358 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25964505" @default.
- W2120237358 hasPublicationYear "2015" @default.
- W2120237358 type Work @default.
- W2120237358 sameAs 2120237358 @default.
- W2120237358 citedByCount "61" @default.
- W2120237358 countsByYear W21202373582016 @default.
- W2120237358 countsByYear W21202373582017 @default.
- W2120237358 countsByYear W21202373582018 @default.
- W2120237358 countsByYear W21202373582019 @default.
- W2120237358 countsByYear W21202373582020 @default.
- W2120237358 countsByYear W21202373582021 @default.
- W2120237358 countsByYear W21202373582022 @default.
- W2120237358 countsByYear W21202373582023 @default.
- W2120237358 crossrefType "journal-article" @default.
- W2120237358 hasAuthorship W2120237358A5017759536 @default.
- W2120237358 hasAuthorship W2120237358A5048085375 @default.
- W2120237358 hasAuthorship W2120237358A5051015778 @default.
- W2120237358 hasBestOaLocation W21202373581 @default.
- W2120237358 hasConcept C118552586 @default.
- W2120237358 hasConcept C119857082 @default.
- W2120237358 hasConcept C137183658 @default.
- W2120237358 hasConcept C138496976 @default.
- W2120237358 hasConcept C15744967 @default.
- W2120237358 hasConcept C162967406 @default.
- W2120237358 hasConcept C169760540 @default.
- W2120237358 hasConcept C169900460 @default.
- W2120237358 hasConcept C2776755682 @default.
- W2120237358 hasConcept C2777112843 @default.
- W2120237358 hasConcept C2780783007 @default.
- W2120237358 hasConcept C41008148 @default.
- W2120237358 hasConcept C513476851 @default.
- W2120237358 hasConcept C70410870 @default.
- W2120237358 hasConcept C83849319 @default.
- W2120237358 hasConceptScore W2120237358C118552586 @default.
- W2120237358 hasConceptScore W2120237358C119857082 @default.
- W2120237358 hasConceptScore W2120237358C137183658 @default.
- W2120237358 hasConceptScore W2120237358C138496976 @default.
- W2120237358 hasConceptScore W2120237358C15744967 @default.
- W2120237358 hasConceptScore W2120237358C162967406 @default.
- W2120237358 hasConceptScore W2120237358C169760540 @default.
- W2120237358 hasConceptScore W2120237358C169900460 @default.
- W2120237358 hasConceptScore W2120237358C2776755682 @default.
- W2120237358 hasConceptScore W2120237358C2777112843 @default.
- W2120237358 hasConceptScore W2120237358C2780783007 @default.
- W2120237358 hasConceptScore W2120237358C41008148 @default.
- W2120237358 hasConceptScore W2120237358C513476851 @default.
- W2120237358 hasConceptScore W2120237358C70410870 @default.
- W2120237358 hasConceptScore W2120237358C83849319 @default.
- W2120237358 hasIssue "11" @default.
- W2120237358 hasLocation W21202373581 @default.
- W2120237358 hasLocation W21202373582 @default.