Matches in SemOpenAlex for { <https://semopenalex.org/work/W2120301982> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2120301982 endingPage "113" @default.
- W2120301982 startingPage "102" @default.
- W2120301982 abstract "We present a fully automatic system for face recognition in databases, with only a small number of samples (even a single sample) for each individual. The shape localization problem is formulated in the Bayesian framework. In the learning stage, the RankBoost approach is introduced to model the likelihood of local features associated with the fiducial point, while preserving the prior ranking order between the ground truth position and its neighbors; in the inferring stage, a simple efficient iterative algorithm is proposed to uncover the MAP shape by locally modeling the likelihood distribution around each fiducial point. Based on the accurately located fiducial points, two popular mutual enhancing texture features for human face representation are automatically extracted and integrated: global texture features, which are the normalized shape-free gray-level values enclosed in the mean shape: local texture features, which are represented by Gabor wavelets extracted at the fiducial points (eye corners, mouth, etc.). Global texture mainly encodes the low-frequency information of a face, while local texture encodes the local high-frequency components. Extensive experiments illustrate that our proposed shape localization approach significantly improves the shape location accuracy, robustness, and face recognition rate; moreover, experiments conducted on the FERET and Yale databases show that our algorithm outperforms the classical eigenfaces and fisherfaces, as well as other approaches utilizing shape and global and local textures." @default.
- W2120301982 created "2016-06-24" @default.
- W2120301982 creator A5000976863 @default.
- W2120301982 creator A5039765869 @default.
- W2120301982 creator A5045843354 @default.
- W2120301982 creator A5061131131 @default.
- W2120301982 creator A5070765074 @default.
- W2120301982 creator A5089722002 @default.
- W2120301982 date "2004-01-01" @default.
- W2120301982 modified "2023-09-23" @default.
- W2120301982 title "Bayesian Shape Localization for Face Recognition Using Global and Local Textures" @default.
- W2120301982 cites W1689445748 @default.
- W2120301982 cites W1997011019 @default.
- W2120301982 cites W2021012145 @default.
- W2120301982 cites W2086570153 @default.
- W2120301982 cites W2091362742 @default.
- W2120301982 cites W2097836861 @default.
- W2120301982 cites W2104908641 @default.
- W2120301982 cites W2109774206 @default.
- W2120301982 cites W2113341759 @default.
- W2120301982 cites W2120954940 @default.
- W2120301982 cites W2121647436 @default.
- W2120301982 cites W2127370622 @default.
- W2120301982 cites W2127530969 @default.
- W2120301982 cites W2128716185 @default.
- W2120301982 cites W2129150631 @default.
- W2120301982 cites W2136771893 @default.
- W2120301982 cites W2138451337 @default.
- W2120301982 cites W2158054470 @default.
- W2120301982 cites W2176290317 @default.
- W2120301982 doi "https://doi.org/10.1109/tcsvt.2003.818359" @default.
- W2120301982 hasPublicationYear "2004" @default.
- W2120301982 type Work @default.
- W2120301982 sameAs 2120301982 @default.
- W2120301982 citedByCount "22" @default.
- W2120301982 countsByYear W21203019822013 @default.
- W2120301982 countsByYear W21203019822014 @default.
- W2120301982 countsByYear W21203019822021 @default.
- W2120301982 countsByYear W21203019822022 @default.
- W2120301982 countsByYear W21203019822023 @default.
- W2120301982 crossrefType "journal-article" @default.
- W2120301982 hasAuthorship W2120301982A5000976863 @default.
- W2120301982 hasAuthorship W2120301982A5039765869 @default.
- W2120301982 hasAuthorship W2120301982A5045843354 @default.
- W2120301982 hasAuthorship W2120301982A5061131131 @default.
- W2120301982 hasAuthorship W2120301982A5070765074 @default.
- W2120301982 hasAuthorship W2120301982A5089722002 @default.
- W2120301982 hasConcept C107673813 @default.
- W2120301982 hasConcept C144024400 @default.
- W2120301982 hasConcept C153180895 @default.
- W2120301982 hasConcept C154945302 @default.
- W2120301982 hasConcept C2779304628 @default.
- W2120301982 hasConcept C31510193 @default.
- W2120301982 hasConcept C31972630 @default.
- W2120301982 hasConcept C36289849 @default.
- W2120301982 hasConcept C41008148 @default.
- W2120301982 hasConceptScore W2120301982C107673813 @default.
- W2120301982 hasConceptScore W2120301982C144024400 @default.
- W2120301982 hasConceptScore W2120301982C153180895 @default.
- W2120301982 hasConceptScore W2120301982C154945302 @default.
- W2120301982 hasConceptScore W2120301982C2779304628 @default.
- W2120301982 hasConceptScore W2120301982C31510193 @default.
- W2120301982 hasConceptScore W2120301982C31972630 @default.
- W2120301982 hasConceptScore W2120301982C36289849 @default.
- W2120301982 hasConceptScore W2120301982C41008148 @default.
- W2120301982 hasIssue "1" @default.
- W2120301982 hasLocation W21203019821 @default.
- W2120301982 hasOpenAccess W2120301982 @default.
- W2120301982 hasPrimaryLocation W21203019821 @default.
- W2120301982 hasRelatedWork W1548715306 @default.
- W2120301982 hasRelatedWork W1560697087 @default.
- W2120301982 hasRelatedWork W1989039360 @default.
- W2120301982 hasRelatedWork W2060029454 @default.
- W2120301982 hasRelatedWork W2100085003 @default.
- W2120301982 hasRelatedWork W2136485282 @default.
- W2120301982 hasRelatedWork W2146295394 @default.
- W2120301982 hasRelatedWork W2347601237 @default.
- W2120301982 hasRelatedWork W2545171730 @default.
- W2120301982 hasRelatedWork W2908959303 @default.
- W2120301982 hasVolume "14" @default.
- W2120301982 isParatext "false" @default.
- W2120301982 isRetracted "false" @default.
- W2120301982 magId "2120301982" @default.
- W2120301982 workType "article" @default.