Matches in SemOpenAlex for { <https://semopenalex.org/work/W2120486243> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2120486243 endingPage "956" @default.
- W2120486243 startingPage "955" @default.
- W2120486243 abstract "Although the prevalence of species of the genus Acinetobacter other than Acinetobacter baumannii has seemingly increased as a cause of nosocomial infections in different geographical areas [1Espinal P Roca I Vila J Clinical impact and molecular bases of antimicrobial resistance in non‐baumannii Acinetobacter.Future Microbiol. 2011; 6: 495-511Crossref PubMed Scopus (39) Google Scholar], the latter species continues to be the most prevalent in hospital settings. Several characteristics of this microorganism should be highlighted: (i) the intrinsic resistance associated with the interplay between decreased outer membrane permeability and constitutive expression of some efflux pumps; (ii) the acquisition of genetic elements such as resistance islands, which may carry up to 45 resistance genes or insertion sequence elements—these latter elements can be inserted upstream from some chromosomal genes and can contribute to the expression of these genes, such as blaADC or blaOXA-51, encoding a chromosomal cephalosporinase and a carbapenemase, respectively, and in addition, mutations in genes related to the overexpression of efflux pumps (AdeABC and AdeIJK) can generate multiresistance, as these efflux pumps normally have different substrates; and (iii) the ability to survive in the environment, most likely associated with biofilm production, which can contribute to the acquisition of either mutations or genetic elements [2Pachón J Vila J Treatment of multiresistantAcinetobacter baumannii infections.Curr Opin Investig Drugs. 2009; 10: 150-156PubMed Google Scholar, 3Vila J Martí S Sánchez‐Céspedes J Porins, efflux pumps and multidrug resistance inAcinetobacter baumannii.J Antimicrob Chemother. 2007; 59: 1210-1215Crossref PubMed Scopus (292) Google Scholar]. All the above-mentioned features lead to the development of multidrug-resistant, extended-drug-resistant and pan-drug-resistant A. baumannii strains. Therefore, not many alternatives are available to treat the infections caused by pan-resistant A. baumannii strains. The drugs currently available, which show a lower percentage of resistant clinical isolates, are colistin and tigecycline. Colistin has been used in several studies to treat infections caused by multidrug-resistant A. baumannii, with suboptimal results. To improve its efficacy, recent pharmacokinetic/pharmacodynamic data have led to the suggestion that the colistin dosage should be optimized with an initial loading dose, to enable therapeutic concentrations to be reached more rapidly [4Plachouras D Karvanen M Friberg LE et al.Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gram‐negative bacteria.Antimicrob Agents Chemother. 2009; 53: 3430-3436Crossref PubMed Scopus (387) Google Scholar]. Tigecycline has shown good in vitro activity against A. baumannii; however, few data, none of them definitive, have been reported from non-comparative studies concerning its efficacy in A. baumannii infections. Moreover, rapid appearance of resistance has occurred during the treatment, most likely associated with the overexpression of AdeABC and/or other efflux pumps. Among the possible combination therapies for the treatment of multidrug-resistant A. baumannii infections, rifampin plus colistin has been evaluated in ventilator-associated pneumonia and bacteraemia. Once more, the results have been discordant, and it may be stressed that a high dose of rifampin must be used; moreover, to avoid the appearance of rifampin resistance during the treatment, it is necessary to ensure, in the case of empirical therapy, that the drug combined with rifampin is active against the A. baumannii strains causing infections in a particular setting. The problematic situation generated by A. baumannii has not been reflected in the development of new antibacterial agents against this microorganism. The last drugs developed, such as doripenem, ceftobiprole and ceftalorine, do not show activity against A. baumannii resistant to carbapenems or cephalosporins. Taking into consideration all the above, it is evident that we desperately need new approaches, including new antibacterial agents, to control A. baumannii infections. The new drugs could be aimed at: (i) essential proteins or processes for the bacteria that have not been used so far; and (ii) processes such as antibiotic resistance and bacterial virulence. Targeting antibiotic resistance is an attractive approach, because it would help to reduce antibiotic resistance itself, and it would allow the recovery of antibiotics to which bacteria have already become resistant. In this sense, the development of efflux pumps or β-lactamase inhibitors should be noted. Studies on drugs targeting the mechanisms that allow bacteria to produce infections are also underway [5Martínez JL Rojo F Vila J Are non‐lethal targets useful for developing novel antimicrobials?.Future Microbiol. 2011; (in press.)PubMed Google Scholar]. Antimicrobial peptides have attracted increasing interest as potential new antimicrobial agents. Some of these antimicrobial agents show good in vitro activity, even against colistin-resistant A. baumannii. Modifications to the basic structure of these peptides can be performed to improve their pharmacokinetic/pharmacodynamic features. Additionally, non-antimicrobial approaches need to be addressed. Recently, in a murine model of disseminated sepsis, active and passive immunization with an inactivated whole cell vaccine was effective in preventing infection by A. baumannii [6McConnell MJ Pachón J Active and passive immunization againstAcinetobacter baumannii using an inactivated whole cell vaccine.Vaccine. 2011; 29: 1-5Crossref Scopus (80) Google Scholar]. Finally, it must be stressed that there is an urgent need to reinforce research on the epidemiology of resistance, surveillance, and the proven measures to control hospital infections. The authors declare that they have no conflict of interest." @default.
- W2120486243 created "2016-06-24" @default.
- W2120486243 creator A5065392872 @default.
- W2120486243 creator A5076347067 @default.
- W2120486243 date "2011-07-01" @default.
- W2120486243 modified "2023-10-14" @default.
- W2120486243 title "Acinetobacter baumannii resistant to everything: what should we do?" @default.
- W2120486243 cites W1965823522 @default.
- W2120486243 cites W2062120628 @default.
- W2120486243 cites W2063730198 @default.
- W2120486243 cites W2118734761 @default.
- W2120486243 cites W2152683133 @default.
- W2120486243 doi "https://doi.org/10.1111/j.1469-0691.2011.03566.x" @default.
- W2120486243 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21722248" @default.
- W2120486243 hasPublicationYear "2011" @default.
- W2120486243 type Work @default.
- W2120486243 sameAs 2120486243 @default.
- W2120486243 citedByCount "26" @default.
- W2120486243 countsByYear W21204862432012 @default.
- W2120486243 countsByYear W21204862432013 @default.
- W2120486243 countsByYear W21204862432014 @default.
- W2120486243 countsByYear W21204862432016 @default.
- W2120486243 countsByYear W21204862432017 @default.
- W2120486243 countsByYear W21204862432018 @default.
- W2120486243 countsByYear W21204862432019 @default.
- W2120486243 countsByYear W21204862432022 @default.
- W2120486243 crossrefType "journal-article" @default.
- W2120486243 hasAuthorship W2120486243A5065392872 @default.
- W2120486243 hasAuthorship W2120486243A5076347067 @default.
- W2120486243 hasBestOaLocation W21204862431 @default.
- W2120486243 hasConcept C104317684 @default.
- W2120486243 hasConcept C114851261 @default.
- W2120486243 hasConcept C133936738 @default.
- W2120486243 hasConcept C200082930 @default.
- W2120486243 hasConcept C2776315533 @default.
- W2120486243 hasConcept C2777637488 @default.
- W2120486243 hasConcept C2778523567 @default.
- W2120486243 hasConcept C501593827 @default.
- W2120486243 hasConcept C523546767 @default.
- W2120486243 hasConcept C54355233 @default.
- W2120486243 hasConcept C86803240 @default.
- W2120486243 hasConcept C89423630 @default.
- W2120486243 hasConcept C94665300 @default.
- W2120486243 hasConceptScore W2120486243C104317684 @default.
- W2120486243 hasConceptScore W2120486243C114851261 @default.
- W2120486243 hasConceptScore W2120486243C133936738 @default.
- W2120486243 hasConceptScore W2120486243C200082930 @default.
- W2120486243 hasConceptScore W2120486243C2776315533 @default.
- W2120486243 hasConceptScore W2120486243C2777637488 @default.
- W2120486243 hasConceptScore W2120486243C2778523567 @default.
- W2120486243 hasConceptScore W2120486243C501593827 @default.
- W2120486243 hasConceptScore W2120486243C523546767 @default.
- W2120486243 hasConceptScore W2120486243C54355233 @default.
- W2120486243 hasConceptScore W2120486243C86803240 @default.
- W2120486243 hasConceptScore W2120486243C89423630 @default.
- W2120486243 hasConceptScore W2120486243C94665300 @default.
- W2120486243 hasIssue "7" @default.
- W2120486243 hasLocation W21204862431 @default.
- W2120486243 hasLocation W21204862432 @default.
- W2120486243 hasOpenAccess W2120486243 @default.
- W2120486243 hasPrimaryLocation W21204862431 @default.
- W2120486243 hasRelatedWork W2337979791 @default.
- W2120486243 hasRelatedWork W2349994860 @default.
- W2120486243 hasRelatedWork W2374824116 @default.
- W2120486243 hasRelatedWork W2375059782 @default.
- W2120486243 hasRelatedWork W2377291282 @default.
- W2120486243 hasRelatedWork W2401291924 @default.
- W2120486243 hasRelatedWork W2582929470 @default.
- W2120486243 hasRelatedWork W3021241825 @default.
- W2120486243 hasRelatedWork W3029812478 @default.
- W2120486243 hasRelatedWork W3031926410 @default.
- W2120486243 hasVolume "17" @default.
- W2120486243 isParatext "false" @default.
- W2120486243 isRetracted "false" @default.
- W2120486243 magId "2120486243" @default.
- W2120486243 workType "article" @default.