Matches in SemOpenAlex for { <https://semopenalex.org/work/W2120725344> ?p ?o ?g. }
- W2120725344 endingPage "520" @default.
- W2120725344 startingPage "507" @default.
- W2120725344 abstract "We benchmark several SVM objective functions for large-scale image classification. We consider one-versus-rest, multiclass, ranking, and weighted approximate ranking SVMs. A comparison of online and batch methods for optimizing the objectives shows that online methods perform as well as batch methods in terms of classification accuracy, but with a significant gain in training speed. Using stochastic gradient descent, we can scale the training to millions of images and thousands of classes. Our experimental evaluation shows that ranking-based algorithms do not outperform the one-versus-rest strategy when a large number of training examples are used. Furthermore, the gap in accuracy between the different algorithms shrinks as the dimension of the features increases. We also show that learning through cross-validation the optimal rebalancing of positive and negative examples can result in a significant improvement for the one-versus-rest strategy. Finally, early stopping can be used as an effective regularization strategy when training with online algorithms. Following these good practices, we were able to improve the state of the art on a large subset of 10K classes and 9M images of ImageNet from 16.7 percent Top-1 accuracy to 19.1 percent." @default.
- W2120725344 created "2016-06-24" @default.
- W2120725344 creator A5010613767 @default.
- W2120725344 creator A5040372929 @default.
- W2120725344 creator A5045217258 @default.
- W2120725344 creator A5059987704 @default.
- W2120725344 date "2014-03-01" @default.
- W2120725344 modified "2023-10-17" @default.
- W2120725344 title "Good Practice in Large-Scale Learning for Image Classification" @default.
- W2120725344 cites W1567125377 @default.
- W2120725344 cites W1637435380 @default.
- W2120725344 cites W1676820704 @default.
- W2120725344 cites W1976921161 @default.
- W2120725344 cites W1984309565 @default.
- W2120725344 cites W1987063155 @default.
- W2120725344 cites W1987435156 @default.
- W2120725344 cites W2006493005 @default.
- W2120725344 cites W2009593947 @default.
- W2120725344 cites W2020733616 @default.
- W2120725344 cites W2027922120 @default.
- W2120725344 cites W2031489346 @default.
- W2120725344 cites W2033379850 @default.
- W2120725344 cites W2035720976 @default.
- W2120725344 cites W2038597090 @default.
- W2120725344 cites W2040672759 @default.
- W2120725344 cites W2047221353 @default.
- W2120725344 cites W2053229256 @default.
- W2120725344 cites W2062292468 @default.
- W2120725344 cites W2077071968 @default.
- W2120725344 cites W2102765684 @default.
- W2120725344 cites W2106191340 @default.
- W2120725344 cites W2110764733 @default.
- W2120725344 cites W2112530506 @default.
- W2120725344 cites W2112865076 @default.
- W2120725344 cites W2116444583 @default.
- W2120725344 cites W2124509324 @default.
- W2120725344 cites W2127176025 @default.
- W2120725344 cites W2127279985 @default.
- W2120725344 cites W2127781398 @default.
- W2120725344 cites W2129921015 @default.
- W2120725344 cites W2131846894 @default.
- W2120725344 cites W2134557905 @default.
- W2120725344 cites W2138516811 @default.
- W2120725344 cites W2142623206 @default.
- W2120725344 cites W2145607950 @default.
- W2120725344 cites W2147238549 @default.
- W2120725344 cites W2148239836 @default.
- W2120725344 cites W2151103935 @default.
- W2120725344 cites W2153635508 @default.
- W2120725344 cites W2155490028 @default.
- W2120725344 cites W2162915993 @default.
- W2120725344 cites W2163922914 @default.
- W2120725344 cites W2165966284 @default.
- W2120725344 cites W2168371480 @default.
- W2120725344 cites W2171749496 @default.
- W2120725344 cites W2541822344 @default.
- W2120725344 cites W2546302380 @default.
- W2120725344 cites W4206733017 @default.
- W2120725344 doi "https://doi.org/10.1109/tpami.2013.146" @default.
- W2120725344 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24457507" @default.
- W2120725344 hasPublicationYear "2014" @default.
- W2120725344 type Work @default.
- W2120725344 sameAs 2120725344 @default.
- W2120725344 citedByCount "130" @default.
- W2120725344 countsByYear W21207253442013 @default.
- W2120725344 countsByYear W21207253442014 @default.
- W2120725344 countsByYear W21207253442015 @default.
- W2120725344 countsByYear W21207253442016 @default.
- W2120725344 countsByYear W21207253442017 @default.
- W2120725344 countsByYear W21207253442018 @default.
- W2120725344 countsByYear W21207253442019 @default.
- W2120725344 countsByYear W21207253442020 @default.
- W2120725344 countsByYear W21207253442021 @default.
- W2120725344 countsByYear W21207253442022 @default.
- W2120725344 countsByYear W21207253442023 @default.
- W2120725344 crossrefType "journal-article" @default.
- W2120725344 hasAuthorship W2120725344A5010613767 @default.
- W2120725344 hasAuthorship W2120725344A5040372929 @default.
- W2120725344 hasAuthorship W2120725344A5045217258 @default.
- W2120725344 hasAuthorship W2120725344A5059987704 @default.
- W2120725344 hasBestOaLocation W21207253442 @default.
- W2120725344 hasConcept C115961682 @default.
- W2120725344 hasConcept C119857082 @default.
- W2120725344 hasConcept C121332964 @default.
- W2120725344 hasConcept C12267149 @default.
- W2120725344 hasConcept C13280743 @default.
- W2120725344 hasConcept C153180895 @default.
- W2120725344 hasConcept C154945302 @default.
- W2120725344 hasConcept C164705383 @default.
- W2120725344 hasConcept C185798385 @default.
- W2120725344 hasConcept C189430467 @default.
- W2120725344 hasConcept C202444582 @default.
- W2120725344 hasConcept C205649164 @default.
- W2120725344 hasConcept C206688291 @default.
- W2120725344 hasConcept C2776135515 @default.
- W2120725344 hasConcept C2778755073 @default.
- W2120725344 hasConcept C33676613 @default.
- W2120725344 hasConcept C33923547 @default.