Matches in SemOpenAlex for { <https://semopenalex.org/work/W2120750456> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2120750456 endingPage "449" @default.
- W2120750456 startingPage "447" @default.
- W2120750456 abstract "HomeCirculation ResearchVol. 103, No. 5Leptin and EPCs in Arterial Injury Free AccessEditorialPDF/EPUBAboutView PDFView EPUBSections ToolsAdd to favoritesDownload citationsTrack citationsPermissions ShareShare onFacebookTwitterLinked InMendeleyReddit Jump toFree AccessEditorialPDF/EPUBLeptin and EPCs in Arterial InjuryYes, We Can! Andreas Schober and Christian Weber Andreas SchoberAndreas Schober From the Cardiology Unit (A.S.), Medizinische Poliklinik, University of Munich; and Institute for Molecular Cardiovascular Research (C.W.), RWTH Aachen University, Germany. Search for more papers by this author and Christian WeberChristian Weber From the Cardiology Unit (A.S.), Medizinische Poliklinik, University of Munich; and Institute for Molecular Cardiovascular Research (C.W.), RWTH Aachen University, Germany. Search for more papers by this author Originally published29 Aug 2008https://doi.org/10.1161/CIRCRESAHA.108.184424Circulation Research. 2008;103:447–449Endothelial progenitor cells (EPCs) were introduced to a broad scientific readership in 1997 by Asahara et al, who demonstrated that CD34+ cells from the peripheral blood can adopt an endothelial cell-like phenotype in vitro.1 This culture-modified cell type (subsequently also termed endothelial outgrowth cells) improved ischemic neovascularization after intravenous transfusion.2 The prospect of ameliorating tissue ischemia by ex vivo–expanded autologous angioblasts resulted in extensive research activities, including the therapeutic application in patients with myocardial ischemia.3 However, the results are still conflicting, which is at least partially attributable to the fact that EPCs comprise a heterogenous pool of subpopulations originating from distinct sources and displaying diverse phenotypes.4 For instance, the common characterization of EPCs as CD34+CD133+VEGF-R2+ by flow cytometry has been recently questioned in different studies showing that only CD133−CD45− cells differentiate into endothelial cells.5,6 Early outgrowth of endothelial-like cells from mononuclear cells cultured for 5 to 7 days in the presence of endothelial growth factors represent a monocyte-like subtype with low proliferative capacity secreting high amounts of angiogenic growth factors.7,8 Conversely, late outgrowth EPCs obtained after 14 to 21 days are highly proliferative and present vessel-forming capacity.9Apart from neovascularization of ischemic tissue, EPCs have been involved in endothelial repair in atherosclerosis and neointima formation after endothelial denudation.10,11 Although the first evidence for a recruitment of circulating stem cells to sites of plaque progression and thus for a possible contribution to endothelial regeneration in atherosclerosis has been recently provided,12 treatment of mice with EPCs was associated with accelerated atherosclerosis.13,14 In contrast, following balloon- or wire-induced endothelial denudation, EPCs were successfully administered to enhance endothelial recovery through direct incorporation into the endothelial lining.10,11 This improved reendothelialization by EPCs is associated with reduced neointima formation15 and may be a valuable tool to reduce the rate of stent thrombosis after percutaneous coronary interventions.16 On the other hand, the increased rate of in-stent restenosis in patients with diabetes is associated with functionally impaired EPCs with reduced reendothelialization capability.17–19In a model of wire injury of the carotid artery, the endothelial recovery by EPCs was delayed in leptin receptor–deficient (db/db) mice with a diabetic phenotype expressing Tie2/LacZ in bone marrow cells.19 However, this inhibitory effect on reendothelialization was not accompanied by reduced neointima formation, because neointimal hyperplasia was almost completely prevented after wire-induced injury in db/db mice despite hyperinsulinemia and hyperglycemia, suggesting a leptin/leptin receptor–specific effect.20,21 Leptin receptor expression on bone marrow cells did not affect neointimal growth excluding the contribution of bone marrow–derived progenitor cells.21 Accordingly, accelerated neointima formation in hyperlipidemic mice was limited in leptin-deficient (ob/ob) mice after ferric chloride–induced vascular injury, which, in contrast to wire-injury, caused thrombotic occlusion with subsequent recanalization and “organization” of the thrombus.22,23 The absence of the prothrombotic activity of leptin appeared to be responsible for the reduction in neointimal hyperplasia after ferric chloride application.24In this issue of Circulation Research, Schroeter et al25 have now demonstrated that infusion of leptin-stimulated human EPCs reduces neointima formation and enhanced reendothelialization through upregulation of αvβ5- and α4-integrin–dependent adhesion to platelets in ferric chloride–induced vascular injury. With this elegant approach, the effect of leptin on EPC-mediated endothelial recovery can be readily discerned from leptin-enhanced thrombosis. This not only extends the mechanisms by which platelet-derived chemokines, P-selectin, and β2 integrins can support the arrest of EPCs and CD34+ progenitor cells at sites of arterial injury11,26 but also adds a new dimension to the functional profile of leptin (Figure). Moreover, the authors provide the first evidence for a contribution of EPCs to recanalization of arterial thrombi.25 Because leptin did not affect EPC proliferation, previously described effects on EPC tube formation may be related to an enhancement of αvβ5- and α4-integrin expression and function in adhesion and migration.25,27 In accordance with previous findings in venous thrombosis, leptin-stimulated EPCs were not incorporated into the endothelial lining, suggesting that the secretion of angiogenic growth factors from EPCs is involved in thrombus recanalization, possibly by promoting the recruitment of endogenous endothelial progeny or endothelial cells from local resident sources.28,29 Notably, Schroeter et al used early outgrowth EPCs, which are presumed to be monocyte-derived and show significant phenotypic overlap with monocytes. This is also remarkable because monocytes play a central role in thrombus recanalization, and their differentiation into endothelial-like cells appears to be an important feature in this context.30,31 In conclusion, thrombus recanalization by (leptin-assisted) mobilization and recruitment of endogenous EPCs or through the application of leptin-stimulated early endothelial outgrowth cells is an interesting new therapeutic approach and can make a credible change in the EPC field beyond ischemic neovascularization and endothelial recovery resulting from other forms of endothelial damage, eg, after percutaneous interventions and stent implantation. Download figureDownload PowerPointFigure. In the context of ferric chloride–induced arterial injury and thrombosis, EPCs stimulated by leptin enhance reendothelialization, promote thrombus recanalization, and limit neointima formation through an upregulation of αvβ5- and α4-integrin expression and integrin-mediated adhesion to platelets or to the extracellular matrix ligands vitronectin (VN) and fibronectin (FN). This mechanism may cooperate with adhesion of EPCs supported by P-selectin and β2 integrins and triggered by platelet-derived chemokines, namely CXCL7 and CXCL12, which activate the chemokine receptors CXCR2 and CXCR4 on EPCs.The opinions expressed in this editorial are not necessarily those of the editors or of the American Heart Association.Sources of FundingThis work was supported by the Deutsche Forschungsgemeinschaft (FOR809).DisclosuresNone.FootnotesCorrespondence to Christian Weber, MD, Institut für Molekulare Herz-Kreislaufforschung, Pauwelsstrasse 30, 52074 Aachen, Germany. E-mail [email protected] References 1 Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997; 275: 964–967.CrossrefMedlineGoogle Scholar2 Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A. 2000; 97: 3422–3427.CrossrefMedlineGoogle Scholar3 Hristov M, Heussen N, Schober A, Weber C. Intracoronary infusion of autologous bone marrow cells and left ventricular function after acute myocardial infarction: a meta-analysis. J Cell Mol Med. 2006; 10: 727–733.CrossrefMedlineGoogle Scholar4 Hristov M, Weber C. Endothelial progenitor cells: characterization, pathophysiology, and possible clinical relevance. J Cell Mol Med. 2004; 8: 498–508.CrossrefMedlineGoogle Scholar5 Case J, Mead LE, Bessler WK, Prater D, White HA, Saadatzadeh MR, Bhavsar JR, Yoder MC, Haneline LS, Ingram DA. Human CD34+ AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol. 2007; 35: 1109–1118.CrossrefMedlineGoogle Scholar6 Timmermans F, Van Hauwermeiren F, De Smedt M, Raedt R, Plasschaert F, De Buyzere ML, Gillebert TC, Plum J, Vandekerckhove B. Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arterioscler Thromb Vasc Biol. 2007; 27: 1572–1579.LinkGoogle Scholar7 Rohde E, Malischnik C, Thaler D, Maierhofer T, Linkesch W, Lanzer G, Guelly C, Strunk D. Blood monocytes mimic endothelial progenitor cells. Stem Cells. 2006; 24: 357–367.CrossrefMedlineGoogle Scholar8 Rehman J, Li J, Orschell CM, March KL. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 2003; 107: 1164–1169.LinkGoogle Scholar9 Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood. 2007; 109: 1801–1809.CrossrefMedlineGoogle Scholar10 Versari D, Lerman LO, Lerman A. The importance of reendothelialization after arterial injury. Curr Pharm Des. 2007; 13: 1811–1824.CrossrefMedlineGoogle Scholar11 Hristov M, Zernecke A, Bidzhekov K, Liehn EA, Shagdarsuren E, Ludwig A, Weber C. Importance of CXCR2 in the homing of human peripheral blood endothelial progenitor cells to sites of arterial injury. Circ Res. 2007; 100: 590–597.LinkGoogle Scholar12 Foteinos G, Hu Y, Xiao Q, Metzler B, Xu Q. Rapid endothelial turnover in atherosclerosis-prone areas coincides with stem cell repair in apolipoprotein E-deficient mice. Circulation. 2008; 117: 1856–1863.LinkGoogle Scholar13 Silvestre JS, Gojova A, Brun V, Potteaux S, Esposito B, Duriez M, Clergue M, Le Ricousse-Roussanne S, Barateau V, Merval R, Groux H, Tobelem G, Levy B, Tedgui A, Mallat Z. Transplantation of bone marrow-derived mononuclear cells in ischemic apolipoprotein E-knockout mice accelerates atherosclerosis without altering plaque composition. Circulation. 2003; 108: 2839–2842.LinkGoogle Scholar14 George J, Afek A, Abashidze A, Shmilovich H, Deutsch V, Kopolovich J, Miller H, Keren G. Transfer of endothelial progenitor and bone marrow cells influences atherosclerotic plaque size and composition in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol. 2005; 25: 2636–2641.LinkGoogle Scholar15 Werner N, Junk S, Laufs U, Link A, Walenta K, Bohm M, Nickenig G. Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res. 2003; 93: e17–e24.LinkGoogle Scholar16 Finn AV, Joner M, Nakazawa G, Kolodgie F, Newell J, John MC, Gold HK, Virmani R. Pathological correlates of late drug-eluting stent thrombosis: strut coverage as a marker of endothelialization. Circulation. 2007; 115: 2435–2441.LinkGoogle Scholar17 Elezi S, Kastrati A, Pache J, Wehinger A, Hadamitzky M, Dirschinger J, Neumann FJ, Schomig A. Diabetes mellitus and the clinical and angiographic outcome after coronary stent placement. J Am Coll Cardiol. 1998; 32: 1866–1873.CrossrefMedlineGoogle Scholar18 Sorrentino SA, Bahlmann FH, Besler C, Muller M, Schulz S, Kirchhoff N, Doerries C, Horvath T, Limbourg A, Limbourg F, Fliser D, Haller H, Drexler H, Landmesser U. Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus: restoration by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation. 2007; 116: 163–173.LinkGoogle Scholar19 Ii M, Takenaka H, Asai J, Ibusuki K, Mizukami Y, Maruyama K, Yoon YS, Wecker A, Luedemann C, Eaton E, Silver M, Thorne T, Losordo DW. Endothelial progenitor thrombospondin-1 mediates diabetes-induced delay in reendothelialization following arterial injury. Circ Res. 2006; 98: 697–704.LinkGoogle Scholar20 Stephenson K, Tunstead J, Tsai A, Gordon R, Henderson S, Dansky HM. Neointimal formation after endovascular arterial injury is markedly attenuated in db/db mice. Arterioscler Thromb Vasc Biol. 2003; 23: 2027–2033.LinkGoogle Scholar21 Bodary PF, Shen Y, Ohman M, Bahrou KL, Vargas FB, Cudney SS, Wickenheiser KJ, Myers MG Jr, Eitzman DT. Leptin regulates neointima formation after arterial injury through mechanisms independent of blood pressure and the leptin receptor/STAT3 signaling pathways involved in energy balance. Arterioscler Thromb Vasc Biol. 2007; 27: 70–76.LinkGoogle Scholar22 Schäfer K, Halle M, Goeschen C, Dellas C, Pynn M, Loskutoff DJ, Konstantinides S. Leptin promotes vascular remodeling and neointimal growth in mice. Arterioscler Thromb Vasc Biol. 2004; 24: 112–117.LinkGoogle Scholar23 Schäfer K, Konstantinides S, Riedel C, Thinnes T, Muller K, Dellas C, Hasenfuss G, Loskutoff DJ. Different mechanisms of increased luminal stenosis after arterial injury in mice deficient for urokinase- or tissue-type plasminogen activator. Circulation. 2002; 106: 1847–1852.LinkGoogle Scholar24 Konstantinides S, Schafer K, Koschnick S, Loskutoff DJ. Leptin-dependent platelet aggregation and arterial thrombosis suggests a mechanism for atherothrombotic disease in obesity. J Clin Invest. 2001; 108: 1533–1540.CrossrefMedlineGoogle Scholar25 Schroeter MR, Leifheit M, Sudholt P, Heida N-M, Dellas C, Rohm I, Alves F, Zientkowska M, Rafail S, Puls M, Hasenfuss G, Konstantinides S, Schäfer K. Leptin enhances the recruitment of endothelial progenitor cells into neointimal lesions after vascular injury by promoting integrin-mediated adhesion. Circ Res. 2008; 103: 536–544.LinkGoogle Scholar26 Zernecke A, Schober A, von Hundelshausen P, Liehn EA, Möpps B, Mericskay M, Gierschik P, Biessen EA, Weber C. SDF-1α/CXCR4 is instrumental for neointimal hyperplasia and recruitment of smooth muscle cell progenitors. Circ Res. 2005; 96: 784–791.LinkGoogle Scholar27 Wolk R, Deb A, Caplice NM, Somers VK. Leptin receptor and functional effects of leptin in human endothelial progenitor cells. Atherosclerosis. 2005; 183: 131–139.CrossrefMedlineGoogle Scholar28 Modarai B, Burnand KG, Sawyer B, Smith A. Endothelial progenitor cells are recruited into resolving venous thrombi. Circulation. 2005; 111: 2645–2653.LinkGoogle Scholar29 Smadja DM, Basire A, Amelot A, Conte A, Bieche I, Le Bonniec BF, Aiach M, Gaussem P. Thrombin bound to a fibrin clot confers angiogenic and haemostatic properties on endothelial progenitor cells. J Cell Mol Med. 2008; 12: 975–986.CrossrefMedlineGoogle Scholar30 Leu HJ, Feigl W, Susani M, Odermatt B. Differentiation of mononuclear blood cells into macrophages, fibroblasts and endothelial cells in thrombus organization. Exp Cell Biol. 1988; 56: 201–210.MedlineGoogle Scholar31 Moldovan NI, Asahara T. Role of blood mononuclear cells in recanalization and vascularization of thrombi: past, present, and future. Trends Cardiovasc Med. 2003; 13: 265–269.CrossrefMedlineGoogle Scholar Previous Back to top Next FiguresReferencesRelatedDetailsCited By Wang Z and Nakayama T (2010) Inflammation, a Link between Obesity and Cardiovascular Disease, Mediators of Inflammation, 10.1155/2010/535918, 2010, (1-17), . August 29, 2008Vol 103, Issue 5 Advertisement Article InformationMetrics https://doi.org/10.1161/CIRCRESAHA.108.184424PMID: 18757832 Originally publishedAugust 29, 2008 Keywordsvascular remodelingendothelial cellswound healingPDF download Advertisement" @default.
- W2120750456 created "2016-06-24" @default.
- W2120750456 creator A5001883769 @default.
- W2120750456 creator A5084460883 @default.
- W2120750456 date "2008-08-29" @default.
- W2120750456 modified "2023-10-18" @default.
- W2120750456 title "Leptin and EPCs in Arterial Injury" @default.
- W2120750456 cites W1977312306 @default.
- W2120750456 cites W1978859651 @default.
- W2120750456 cites W1986991023 @default.
- W2120750456 cites W1993222177 @default.
- W2120750456 cites W1999579644 @default.
- W2120750456 cites W2015343627 @default.
- W2120750456 cites W2019475981 @default.
- W2120750456 cites W2021237156 @default.
- W2120750456 cites W2025455693 @default.
- W2120750456 cites W2038473729 @default.
- W2120750456 cites W2042116568 @default.
- W2120750456 cites W2053704719 @default.
- W2120750456 cites W2057744541 @default.
- W2120750456 cites W2060420084 @default.
- W2120750456 cites W2075264988 @default.
- W2120750456 cites W2076689814 @default.
- W2120750456 cites W2079039691 @default.
- W2120750456 cites W2096476446 @default.
- W2120750456 cites W2109773324 @default.
- W2120750456 cites W2110419512 @default.
- W2120750456 cites W2118840886 @default.
- W2120750456 cites W2155544733 @default.
- W2120750456 cites W2156783437 @default.
- W2120750456 cites W2157880621 @default.
- W2120750456 cites W2160741229 @default.
- W2120750456 cites W2163941933 @default.
- W2120750456 cites W2166028130 @default.
- W2120750456 cites W2166597533 @default.
- W2120750456 cites W2170579826 @default.
- W2120750456 cites W2170627202 @default.
- W2120750456 doi "https://doi.org/10.1161/circresaha.108.184424" @default.
- W2120750456 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18757832" @default.
- W2120750456 hasPublicationYear "2008" @default.
- W2120750456 type Work @default.
- W2120750456 sameAs 2120750456 @default.
- W2120750456 citedByCount "1" @default.
- W2120750456 crossrefType "journal-article" @default.
- W2120750456 hasAuthorship W2120750456A5001883769 @default.
- W2120750456 hasAuthorship W2120750456A5084460883 @default.
- W2120750456 hasBestOaLocation W21207504561 @default.
- W2120750456 hasConcept C126322002 @default.
- W2120750456 hasConcept C134018914 @default.
- W2120750456 hasConcept C164705383 @default.
- W2120750456 hasConcept C2780613262 @default.
- W2120750456 hasConcept C511355011 @default.
- W2120750456 hasConcept C71924100 @default.
- W2120750456 hasConceptScore W2120750456C126322002 @default.
- W2120750456 hasConceptScore W2120750456C134018914 @default.
- W2120750456 hasConceptScore W2120750456C164705383 @default.
- W2120750456 hasConceptScore W2120750456C2780613262 @default.
- W2120750456 hasConceptScore W2120750456C511355011 @default.
- W2120750456 hasConceptScore W2120750456C71924100 @default.
- W2120750456 hasIssue "5" @default.
- W2120750456 hasLocation W21207504561 @default.
- W2120750456 hasLocation W21207504562 @default.
- W2120750456 hasOpenAccess W2120750456 @default.
- W2120750456 hasPrimaryLocation W21207504561 @default.
- W2120750456 hasRelatedWork W1967968809 @default.
- W2120750456 hasRelatedWork W1986266451 @default.
- W2120750456 hasRelatedWork W2074825053 @default.
- W2120750456 hasRelatedWork W2077507968 @default.
- W2120750456 hasRelatedWork W2108749909 @default.
- W2120750456 hasRelatedWork W2113382445 @default.
- W2120750456 hasRelatedWork W2125145927 @default.
- W2120750456 hasRelatedWork W2127860144 @default.
- W2120750456 hasRelatedWork W2133833346 @default.
- W2120750456 hasRelatedWork W4235128290 @default.
- W2120750456 hasVolume "103" @default.
- W2120750456 isParatext "false" @default.
- W2120750456 isRetracted "false" @default.
- W2120750456 magId "2120750456" @default.
- W2120750456 workType "article" @default.