Matches in SemOpenAlex for { <https://semopenalex.org/work/W2120864630> ?p ?o ?g. }
- W2120864630 endingPage "512" @default.
- W2120864630 startingPage "486" @default.
- W2120864630 abstract "The geomorphic evolution of many landscapes is fundamentally determined by the evolution of the river channels and their interactions with hillslopes. Consequently, models of landscape evolution ought to track the evolution of the channel geometry so as to quantify the rate of erosion of channel bottoms and to follow the changes in hillslope-channel coupling over time. Unfortunately, the spatial resolution required to describe channel morphology adequately is computationally impractical. It is also beyond the resolution of most digital elevation data. What is required is a parameterization scheme for approximating fine scale channel morphology at a coarse pixel scale. Such a parameterization is already implicitly employed in most models by assuming channel equilibrium, which ties the width and depth of a model channel to the square root of discharge through a pixel. Channel fluxes are thereby predictable, and a closed form of the governing equations is attained. In reality, mountain river channels do not take a simple equilibrium form and show great spatial variability and evident disequilibrium geometry. Since the time scales of changes in channel geometry, bedrock channel erosion, and hillslope response are all closely related, it is reasonable to infer that the spatio-temporal development of the landscape is determined by their interaction and that channel disequilibrium is a fundamental factor in the dynamics of landscape evolution. If this is the case, we need an alternative sub-grid scale parameterization that aggregates channel properties such as surface morphology, roughness, cross-sectional geometry, so that the time dependent behavior of these properties can be estimated at the coarse pixel scale. We introduce such a parameterization measure, which we term <i>channelization</i>, after extensive investigation of the pixel resolution dependence of topographic relief. We focus in particular on the effect of coarse graining on digital elevation data for derived measures such as channel slope and upstream area and demonstrate that we can approximately correct for this effect. We show that a very simple geomorphic model can be constructed around the channelization parameter and the resolution-invariant topographic measures. This model demonstrates that channel disequilibrium may play a significant role in mountain landscape dynamics. It also shows how geomorphic models in general could be modified to incorporate such sub-pixel scale complexities and to better model these dynamics." @default.
- W2120864630 created "2016-06-24" @default.
- W2120864630 creator A5036157952 @default.
- W2120864630 creator A5074663000 @default.
- W2120864630 date "2001-04-01" @default.
- W2120864630 modified "2023-10-18" @default.
- W2120864630 title "A Channelization Model of Landscape Evolution" @default.
- W2120864630 cites W1510447231 @default.
- W2120864630 cites W1514931186 @default.
- W2120864630 cites W1582979715 @default.
- W2120864630 cites W1625583015 @default.
- W2120864630 cites W1968997575 @default.
- W2120864630 cites W1971955535 @default.
- W2120864630 cites W1976617745 @default.
- W2120864630 cites W1978885439 @default.
- W2120864630 cites W1980688843 @default.
- W2120864630 cites W1986385443 @default.
- W2120864630 cites W2000354180 @default.
- W2120864630 cites W2008908514 @default.
- W2120864630 cites W2009171116 @default.
- W2120864630 cites W2015209288 @default.
- W2120864630 cites W2026886308 @default.
- W2120864630 cites W2031619456 @default.
- W2120864630 cites W2049978254 @default.
- W2120864630 cites W2050114269 @default.
- W2120864630 cites W2051839631 @default.
- W2120864630 cites W2055161902 @default.
- W2120864630 cites W2057127271 @default.
- W2120864630 cites W2058451387 @default.
- W2120864630 cites W2059054619 @default.
- W2120864630 cites W2060112246 @default.
- W2120864630 cites W2076714162 @default.
- W2120864630 cites W2082617415 @default.
- W2120864630 cites W2107656651 @default.
- W2120864630 cites W2109287321 @default.
- W2120864630 cites W2111552444 @default.
- W2120864630 cites W2128421631 @default.
- W2120864630 cites W2134318668 @default.
- W2120864630 cites W2135141994 @default.
- W2120864630 cites W2135955237 @default.
- W2120864630 cites W2151897820 @default.
- W2120864630 cites W2162416699 @default.
- W2120864630 cites W2165654941 @default.
- W2120864630 cites W2170120409 @default.
- W2120864630 cites W2170801163 @default.
- W2120864630 cites W2482783126 @default.
- W2120864630 cites W2769962262 @default.
- W2120864630 cites W2933414627 @default.
- W2120864630 cites W3091851535 @default.
- W2120864630 cites W2126627871 @default.
- W2120864630 doi "https://doi.org/10.2475/ajs.301.4-5.486" @default.
- W2120864630 hasPublicationYear "2001" @default.
- W2120864630 type Work @default.
- W2120864630 sameAs 2120864630 @default.
- W2120864630 citedByCount "39" @default.
- W2120864630 countsByYear W21208646302012 @default.
- W2120864630 countsByYear W21208646302013 @default.
- W2120864630 countsByYear W21208646302016 @default.
- W2120864630 countsByYear W21208646302017 @default.
- W2120864630 countsByYear W21208646302018 @default.
- W2120864630 countsByYear W21208646302019 @default.
- W2120864630 countsByYear W21208646302022 @default.
- W2120864630 countsByYear W21208646302023 @default.
- W2120864630 crossrefType "journal-article" @default.
- W2120864630 hasAuthorship W2120864630A5036157952 @default.
- W2120864630 hasAuthorship W2120864630A5074663000 @default.
- W2120864630 hasBestOaLocation W21208646302 @default.
- W2120864630 hasConcept C114793014 @default.
- W2120864630 hasConcept C118487528 @default.
- W2120864630 hasConcept C123157820 @default.
- W2120864630 hasConcept C127162648 @default.
- W2120864630 hasConcept C127313418 @default.
- W2120864630 hasConcept C205649164 @default.
- W2120864630 hasConcept C2524010 @default.
- W2120864630 hasConcept C2778146401 @default.
- W2120864630 hasConcept C2778755073 @default.
- W2120864630 hasConcept C31258907 @default.
- W2120864630 hasConcept C33923547 @default.
- W2120864630 hasConcept C41008148 @default.
- W2120864630 hasConcept C51889082 @default.
- W2120864630 hasConcept C58640448 @default.
- W2120864630 hasConcept C64584415 @default.
- W2120864630 hasConcept C71924100 @default.
- W2120864630 hasConcept C76155785 @default.
- W2120864630 hasConceptScore W2120864630C114793014 @default.
- W2120864630 hasConceptScore W2120864630C118487528 @default.
- W2120864630 hasConceptScore W2120864630C123157820 @default.
- W2120864630 hasConceptScore W2120864630C127162648 @default.
- W2120864630 hasConceptScore W2120864630C127313418 @default.
- W2120864630 hasConceptScore W2120864630C205649164 @default.
- W2120864630 hasConceptScore W2120864630C2524010 @default.
- W2120864630 hasConceptScore W2120864630C2778146401 @default.
- W2120864630 hasConceptScore W2120864630C2778755073 @default.
- W2120864630 hasConceptScore W2120864630C31258907 @default.
- W2120864630 hasConceptScore W2120864630C33923547 @default.
- W2120864630 hasConceptScore W2120864630C41008148 @default.
- W2120864630 hasConceptScore W2120864630C51889082 @default.
- W2120864630 hasConceptScore W2120864630C58640448 @default.