Matches in SemOpenAlex for { <https://semopenalex.org/work/W2121043479> ?p ?o ?g. }
- W2121043479 endingPage "2434" @default.
- W2121043479 startingPage "2415" @default.
- W2121043479 abstract "Abstract. In data sparse mountainous regions it is difficult to derive areal precipitation estimates. In addition, their evaluation by cross validation can be misleading if the precipitation gauges are not in representative locations in the catchment. This study aims at the evaluation of precipitation estimates in data sparse mountainous catchments. In particular, it is first tested whether monthly precipitation fields from downscaled reanalysis data can be used for interpolating gauge observations. Secondly, precipitation estimates from this and other methods are evaluated by comparing simulated and observed discharge, which has the advantage that the data are evaluated at the catchment scale. This approach is extended here in order to differentiate between errors in the overall bias and the temporal dynamics, and by taking into account different sources of uncertainties. The study area includes six headwater catchments of the Karadarya Basin in Central Asia. Generally the precipitation estimate based on monthly precipitation fields from downscaled reanalysis data showed an acceptable performance, comparable to another interpolation method using monthly precipitation fields from multi-linear regression against topographical variables. Poor performance was observed in only one catchment, probably due to mountain ridges not resolved in the model orography of the regional climate model. Using two performance criteria for the evaluation by hydrological modelling allowed a more informed differentiation between the precipitation data and showed that the precipitation data sets mostly differed in their overall bias, while the performance with respect to the temporal dynamics was similar. Our precipitation estimates in these catchments are considerably higher than those from continental- or global-scale gridded data sets. The study demonstrates large uncertainties in areal precipitation estimates in these data sparse mountainous catchments. In such regions with only very few precipitation gauges but high spatial variability of precipitation, important information for evaluating precipitation estimates may be gained by hydrological modelling and a comparison to observed discharge." @default.
- W2121043479 created "2016-06-24" @default.
- W2121043479 creator A5007219757 @default.
- W2121043479 creator A5016849850 @default.
- W2121043479 creator A5017259467 @default.
- W2121043479 creator A5017904065 @default.
- W2121043479 creator A5022591880 @default.
- W2121043479 creator A5061302342 @default.
- W2121043479 creator A5069855874 @default.
- W2121043479 date "2013-07-02" @default.
- W2121043479 modified "2023-10-16" @default.
- W2121043479 title "Evaluation of areal precipitation estimates based on downscaled reanalysis and station data by hydrological modelling" @default.
- W2121043479 cites W1170869847 @default.
- W2121043479 cites W1490048247 @default.
- W2121043479 cites W1840229183 @default.
- W2121043479 cites W1963732096 @default.
- W2121043479 cites W1964557443 @default.
- W2121043479 cites W1968675363 @default.
- W2121043479 cites W1970492040 @default.
- W2121043479 cites W1971556635 @default.
- W2121043479 cites W1973335937 @default.
- W2121043479 cites W1975767304 @default.
- W2121043479 cites W1977989018 @default.
- W2121043479 cites W1992044510 @default.
- W2121043479 cites W1998370199 @default.
- W2121043479 cites W1999208049 @default.
- W2121043479 cites W2000938259 @default.
- W2121043479 cites W2010441009 @default.
- W2121043479 cites W2022741530 @default.
- W2121043479 cites W2025363862 @default.
- W2121043479 cites W2026026281 @default.
- W2121043479 cites W2037609456 @default.
- W2121043479 cites W2042266611 @default.
- W2121043479 cites W2045189895 @default.
- W2121043479 cites W2049472359 @default.
- W2121043479 cites W2050191260 @default.
- W2121043479 cites W2055224010 @default.
- W2121043479 cites W2067796305 @default.
- W2121043479 cites W2090249381 @default.
- W2121043479 cites W2094973654 @default.
- W2121043479 cites W2104322269 @default.
- W2121043479 cites W2112525484 @default.
- W2121043479 cites W2112828507 @default.
- W2121043479 cites W2113706540 @default.
- W2121043479 cites W2113951488 @default.
- W2121043479 cites W2117779820 @default.
- W2121043479 cites W2121025662 @default.
- W2121043479 cites W2124738823 @default.
- W2121043479 cites W2125163611 @default.
- W2121043479 cites W2125917947 @default.
- W2121043479 cites W2144051257 @default.
- W2121043479 cites W2146496990 @default.
- W2121043479 cites W2147169375 @default.
- W2121043479 cites W2153243519 @default.
- W2121043479 cites W2154306139 @default.
- W2121043479 cites W2169717303 @default.
- W2121043479 cites W4233772956 @default.
- W2121043479 cites W4235027737 @default.
- W2121043479 doi "https://doi.org/10.5194/hess-17-2415-2013" @default.
- W2121043479 hasPublicationYear "2013" @default.
- W2121043479 type Work @default.
- W2121043479 sameAs 2121043479 @default.
- W2121043479 citedByCount "63" @default.
- W2121043479 countsByYear W21210434792014 @default.
- W2121043479 countsByYear W21210434792015 @default.
- W2121043479 countsByYear W21210434792016 @default.
- W2121043479 countsByYear W21210434792017 @default.
- W2121043479 countsByYear W21210434792018 @default.
- W2121043479 countsByYear W21210434792019 @default.
- W2121043479 countsByYear W21210434792020 @default.
- W2121043479 countsByYear W21210434792021 @default.
- W2121043479 countsByYear W21210434792022 @default.
- W2121043479 countsByYear W21210434792023 @default.
- W2121043479 crossrefType "journal-article" @default.
- W2121043479 hasAuthorship W2121043479A5007219757 @default.
- W2121043479 hasAuthorship W2121043479A5016849850 @default.
- W2121043479 hasAuthorship W2121043479A5017259467 @default.
- W2121043479 hasAuthorship W2121043479A5017904065 @default.
- W2121043479 hasAuthorship W2121043479A5022591880 @default.
- W2121043479 hasAuthorship W2121043479A5061302342 @default.
- W2121043479 hasAuthorship W2121043479A5069855874 @default.
- W2121043479 hasBestOaLocation W21210434791 @default.
- W2121043479 hasConcept C107054158 @default.
- W2121043479 hasConcept C120961793 @default.
- W2121043479 hasConcept C121684516 @default.
- W2121043479 hasConcept C126197015 @default.
- W2121043479 hasConcept C126645576 @default.
- W2121043479 hasConcept C127313418 @default.
- W2121043479 hasConcept C137800194 @default.
- W2121043479 hasConcept C153294291 @default.
- W2121043479 hasConcept C194507410 @default.
- W2121043479 hasConcept C205649164 @default.
- W2121043479 hasConcept C39432304 @default.
- W2121043479 hasConcept C41008148 @default.
- W2121043479 hasConcept C49204034 @default.
- W2121043479 hasConcept C502989409 @default.
- W2121043479 hasConcept C58640448 @default.
- W2121043479 hasConcept C75398719 @default.