Matches in SemOpenAlex for { <https://semopenalex.org/work/W2121084857> ?p ?o ?g. }
- W2121084857 endingPage "437" @default.
- W2121084857 startingPage "419" @default.
- W2121084857 abstract "The discovery of low-energy stable and meta-stable molecular structures remains an important and unsolved problem in search and optimization. In this paper, we contribute two stochastic algorithms, the archiving molecular memetic algorithm (AMMA) and the archiving basin hopping algorithm (ABHA) for sampling low-energy isomers on the landscapes of pure water clusters (H <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> O) <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>n</i> . We applied our methods to two sophisticated empirical water cluster models, TTM2.1-F and OSS2, and generated archives of low-energy water isomers (H <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> O) <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>n n</i> =3-15. Our algorithms not only reproduced previously-found best minima, but also discovered new global minima candidates for sizes 9-15 on OSS2. Further numerical results show that AMMA and ABHA outperformed a baseline stochastic multistart local search algorithm in terms of convergence and isomer archival. Noting a performance differential between TTM2.1-F and OSS2, we analyzed both model landscapes to reveal that the global and local correlation properties of the empirical models differ significantly. In particular, the OSS2 landscape was less correlated and hence, more difficult to explore and optimize. Guided by our landscape analyses, we proposed and demonstrated the effectiveness of a hybrid local search algorithm, which significantly improved the sampling performance of AMMA on the larger OSS2 landscapes. Although applied to pure water clusters in this paper, AMMA and ABHA can be easily modified for subsequent studies in computational chemistry and biology. Moreover, the landscape analyses conducted in this paper can be replicated for other molecular systems to uncover landscape properties and provide insights to both physical chemists and evolutionary algorithmists." @default.
- W2121084857 created "2016-06-24" @default.
- W2121084857 creator A5006664767 @default.
- W2121084857 creator A5031677584 @default.
- W2121084857 creator A5065710302 @default.
- W2121084857 creator A5066073375 @default.
- W2121084857 creator A5068243197 @default.
- W2121084857 creator A5071842961 @default.
- W2121084857 creator A5081919574 @default.
- W2121084857 date "2010-06-01" @default.
- W2121084857 modified "2023-09-22" @default.
- W2121084857 title "Discovering Unique, Low-Energy Pure Water Isomers: Memetic Exploration, Optimization, and Landscape Analysis" @default.
- W2121084857 cites W102487131 @default.
- W2121084857 cites W1482559207 @default.
- W2121084857 cites W1503296932 @default.
- W2121084857 cites W1573534773 @default.
- W2121084857 cites W1636598878 @default.
- W2121084857 cites W1964390413 @default.
- W2121084857 cites W1966754032 @default.
- W2121084857 cites W1969232586 @default.
- W2121084857 cites W1972865897 @default.
- W2121084857 cites W1973503398 @default.
- W2121084857 cites W1976619404 @default.
- W2121084857 cites W1981581073 @default.
- W2121084857 cites W1985318737 @default.
- W2121084857 cites W1994755410 @default.
- W2121084857 cites W1995829251 @default.
- W2121084857 cites W1997562335 @default.
- W2121084857 cites W1999268523 @default.
- W2121084857 cites W2006160350 @default.
- W2121084857 cites W2013387328 @default.
- W2121084857 cites W2021805949 @default.
- W2121084857 cites W2024726841 @default.
- W2121084857 cites W2025965754 @default.
- W2121084857 cites W2026797273 @default.
- W2121084857 cites W2029667189 @default.
- W2121084857 cites W2035152104 @default.
- W2121084857 cites W2056760934 @default.
- W2121084857 cites W2057350662 @default.
- W2121084857 cites W2064891927 @default.
- W2121084857 cites W2065528954 @default.
- W2121084857 cites W2075393824 @default.
- W2121084857 cites W2078020766 @default.
- W2121084857 cites W2078613814 @default.
- W2121084857 cites W2085907003 @default.
- W2121084857 cites W2087596773 @default.
- W2121084857 cites W2088001870 @default.
- W2121084857 cites W2091334196 @default.
- W2121084857 cites W2092325228 @default.
- W2121084857 cites W2102006495 @default.
- W2121084857 cites W2112036188 @default.
- W2121084857 cites W2139343496 @default.
- W2121084857 cites W2151041330 @default.
- W2121084857 cites W2154047522 @default.
- W2121084857 cites W2155939140 @default.
- W2121084857 cites W2162029810 @default.
- W2121084857 cites W2165885026 @default.
- W2121084857 cites W2166513470 @default.
- W2121084857 cites W2167506047 @default.
- W2121084857 cites W2169354676 @default.
- W2121084857 cites W2477830663 @default.
- W2121084857 cites W3105621768 @default.
- W2121084857 cites W4211211085 @default.
- W2121084857 cites W4230466483 @default.
- W2121084857 cites W4376999360 @default.
- W2121084857 doi "https://doi.org/10.1109/tevc.2009.2033584" @default.
- W2121084857 hasPublicationYear "2010" @default.
- W2121084857 type Work @default.
- W2121084857 sameAs 2121084857 @default.
- W2121084857 citedByCount "32" @default.
- W2121084857 countsByYear W21210848572012 @default.
- W2121084857 countsByYear W21210848572013 @default.
- W2121084857 countsByYear W21210848572014 @default.
- W2121084857 countsByYear W21210848572015 @default.
- W2121084857 countsByYear W21210848572017 @default.
- W2121084857 countsByYear W21210848572018 @default.
- W2121084857 countsByYear W21210848572019 @default.
- W2121084857 countsByYear W21210848572020 @default.
- W2121084857 countsByYear W21210848572021 @default.
- W2121084857 countsByYear W21210848572022 @default.
- W2121084857 crossrefType "journal-article" @default.
- W2121084857 hasAuthorship W2121084857A5006664767 @default.
- W2121084857 hasAuthorship W2121084857A5031677584 @default.
- W2121084857 hasAuthorship W2121084857A5065710302 @default.
- W2121084857 hasAuthorship W2121084857A5066073375 @default.
- W2121084857 hasAuthorship W2121084857A5068243197 @default.
- W2121084857 hasAuthorship W2121084857A5071842961 @default.
- W2121084857 hasAuthorship W2121084857A5081919574 @default.
- W2121084857 hasConcept C11413529 @default.
- W2121084857 hasConcept C119621388 @default.
- W2121084857 hasConcept C121332964 @default.
- W2121084857 hasConcept C134306372 @default.
- W2121084857 hasConcept C135320971 @default.
- W2121084857 hasConcept C154945302 @default.
- W2121084857 hasConcept C162324750 @default.
- W2121084857 hasConcept C186633575 @default.
- W2121084857 hasConcept C2777303404 @default.
- W2121084857 hasConcept C33923547 @default.