Matches in SemOpenAlex for { <https://semopenalex.org/work/W2121209083> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2121209083 endingPage "1791" @default.
- W2121209083 startingPage "1769" @default.
- W2121209083 abstract "The binary Mumford-Shah model is a widespread tool for image segmentation and can be considered as a basic model in shape optimization with a broad range of applications in computer vision, ranging from basic segmentation and labeling to object reconstruction. This paper presents robust a posteriori error estimates for a natural error quantity, namely the area of the non properly segmented region. To this end, a suitable strictly convex and non-constrained relaxation of the originally non-convex functional is investigated and Repin’s functional approach for a posteriori error estimation is used to control the numerical error for the relaxed problem in the L-norm. In combination with a suitable cut out argument, a fully practical estimate for the area mismatch is derived. This estimate is incorporated in an adaptive meshing strategy. Two different adaptive primal-dual finite element schemes, and the most frequently used finite difference discretization are investigated and compared. Numerical experiments show qualitative and quantitative properties of the estimates and demonstrate their usefulness in practical applications." @default.
- W2121209083 created "2016-06-24" @default.
- W2121209083 creator A5012384563 @default.
- W2121209083 creator A5063603168 @default.
- W2121209083 creator A5069332361 @default.
- W2121209083 date "2016-10-20" @default.
- W2121209083 modified "2023-09-26" @default.
- W2121209083 title "A posteriori error control for the binary Mumford-Shah model" @default.
- W2121209083 cites W1480714962 @default.
- W2121209083 cites W1532160004 @default.
- W2121209083 cites W1560055494 @default.
- W2121209083 cites W1590276917 @default.
- W2121209083 cites W1593038947 @default.
- W2121209083 cites W1653619892 @default.
- W2121209083 cites W1968309215 @default.
- W2121209083 cites W1976688370 @default.
- W2121209083 cites W1986753844 @default.
- W2121209083 cites W1990510363 @default.
- W2121209083 cites W2005089986 @default.
- W2121209083 cites W2010840867 @default.
- W2121209083 cites W2014307425 @default.
- W2121209083 cites W2022088322 @default.
- W2121209083 cites W2031312034 @default.
- W2121209083 cites W2033468335 @default.
- W2121209083 cites W2037836476 @default.
- W2121209083 cites W2038495454 @default.
- W2121209083 cites W2067736594 @default.
- W2121209083 cites W2070289182 @default.
- W2121209083 cites W2084002682 @default.
- W2121209083 cites W2088293348 @default.
- W2121209083 cites W2089024363 @default.
- W2121209083 cites W2092663520 @default.
- W2121209083 cites W2094434485 @default.
- W2121209083 cites W2096201928 @default.
- W2121209083 cites W2098132613 @default.
- W2121209083 cites W2101745321 @default.
- W2121209083 cites W2103559027 @default.
- W2121209083 cites W2111957738 @default.
- W2121209083 cites W2114487471 @default.
- W2121209083 cites W2122890444 @default.
- W2121209083 cites W2138144773 @default.
- W2121209083 cites W2142058898 @default.
- W2121209083 cites W2150593711 @default.
- W2121209083 cites W2164278908 @default.
- W2121209083 cites W2397715566 @default.
- W2121209083 cites W2416750559 @default.
- W2121209083 cites W2544610656 @default.
- W2121209083 cites W2944437997 @default.
- W2121209083 cites W408406386 @default.
- W2121209083 doi "https://doi.org/10.1090/mcom/3138" @default.
- W2121209083 hasPublicationYear "2016" @default.
- W2121209083 type Work @default.
- W2121209083 sameAs 2121209083 @default.
- W2121209083 citedByCount "7" @default.
- W2121209083 countsByYear W21212090832017 @default.
- W2121209083 countsByYear W21212090832018 @default.
- W2121209083 countsByYear W21212090832020 @default.
- W2121209083 countsByYear W21212090832022 @default.
- W2121209083 countsByYear W21212090832023 @default.
- W2121209083 crossrefType "journal-article" @default.
- W2121209083 hasAuthorship W2121209083A5012384563 @default.
- W2121209083 hasAuthorship W2121209083A5063603168 @default.
- W2121209083 hasAuthorship W2121209083A5069332361 @default.
- W2121209083 hasBestOaLocation W21212090831 @default.
- W2121209083 hasConcept C111472728 @default.
- W2121209083 hasConcept C138885662 @default.
- W2121209083 hasConcept C28826006 @default.
- W2121209083 hasConcept C33923547 @default.
- W2121209083 hasConcept C48372109 @default.
- W2121209083 hasConcept C75553542 @default.
- W2121209083 hasConcept C94375191 @default.
- W2121209083 hasConceptScore W2121209083C111472728 @default.
- W2121209083 hasConceptScore W2121209083C138885662 @default.
- W2121209083 hasConceptScore W2121209083C28826006 @default.
- W2121209083 hasConceptScore W2121209083C33923547 @default.
- W2121209083 hasConceptScore W2121209083C48372109 @default.
- W2121209083 hasConceptScore W2121209083C75553542 @default.
- W2121209083 hasConceptScore W2121209083C94375191 @default.
- W2121209083 hasIssue "306" @default.
- W2121209083 hasLocation W21212090831 @default.
- W2121209083 hasLocation W21212090832 @default.
- W2121209083 hasOpenAccess W2121209083 @default.
- W2121209083 hasPrimaryLocation W21212090831 @default.
- W2121209083 hasRelatedWork W1970232242 @default.
- W2121209083 hasRelatedWork W2008086225 @default.
- W2121209083 hasRelatedWork W2020174565 @default.
- W2121209083 hasRelatedWork W2042743612 @default.
- W2121209083 hasRelatedWork W2045935051 @default.
- W2121209083 hasRelatedWork W2050500926 @default.
- W2121209083 hasRelatedWork W2769169516 @default.
- W2121209083 hasRelatedWork W2963379946 @default.
- W2121209083 hasRelatedWork W3041373444 @default.
- W2121209083 hasRelatedWork W4251845909 @default.
- W2121209083 hasVolume "86" @default.
- W2121209083 isParatext "false" @default.
- W2121209083 isRetracted "false" @default.
- W2121209083 magId "2121209083" @default.
- W2121209083 workType "article" @default.