Matches in SemOpenAlex for { <https://semopenalex.org/work/W2121323318> ?p ?o ?g. }
- W2121323318 endingPage "887" @default.
- W2121323318 startingPage "871" @default.
- W2121323318 abstract "We previously reported that i) a Western diet increased levels of unsaturated lysophosphatidic acid (LPA) in small intestine and plasma of LDL receptor null (LDLR−/−) mice, and ii) supplementing standard mouse chow with unsaturated (but not saturated) LPA produced dyslipidemia and inflammation. Here we report that supplementing chow with unsaturated (but not saturated) LPA resulted in aortic atherosclerosis, which was ameliorated by adding transgenic 6F tomatoes. Supplementing chow with lysophosphatidylcholine (LysoPC) 18:1 (but not LysoPC 18:0) resulted in dyslipidemia similar to that seen on adding LPA 18:1 to chow. PF8380 (a specific inhibitor of autotaxin) significantly ameliorated the LysoPC 18:1-induced dyslipidemia. Supplementing chow with LysoPC 18:1 dramatically increased the levels of unsaturated LPA species in small intestine, liver, and plasma, and the increase was significantly ameliorated by PF8380 indicating that the conversion of LysoPC 18:1 to LPA 18:1 was autotaxin dependent. Adding LysoPC 18:0 to chow increased levels of LPA 18:0 in small intestine, liver, and plasma but was not altered by PF8380 indicating that conversion of LysoPC 18:0 to LPA 18:0 was autotaxin independent. We conclude that i) intestinally derived unsaturated (but not saturated) LPA can cause atherosclerosis in LDLR−/− mice, and ii) autotaxin mediates the conversion of unsaturated (but not saturated) LysoPC to LPA. We previously reported that i) a Western diet increased levels of unsaturated lysophosphatidic acid (LPA) in small intestine and plasma of LDL receptor null (LDLR−/−) mice, and ii) supplementing standard mouse chow with unsaturated (but not saturated) LPA produced dyslipidemia and inflammation. Here we report that supplementing chow with unsaturated (but not saturated) LPA resulted in aortic atherosclerosis, which was ameliorated by adding transgenic 6F tomatoes. Supplementing chow with lysophosphatidylcholine (LysoPC) 18:1 (but not LysoPC 18:0) resulted in dyslipidemia similar to that seen on adding LPA 18:1 to chow. PF8380 (a specific inhibitor of autotaxin) significantly ameliorated the LysoPC 18:1-induced dyslipidemia. Supplementing chow with LysoPC 18:1 dramatically increased the levels of unsaturated LPA species in small intestine, liver, and plasma, and the increase was significantly ameliorated by PF8380 indicating that the conversion of LysoPC 18:1 to LPA 18:1 was autotaxin dependent. Adding LysoPC 18:0 to chow increased levels of LPA 18:0 in small intestine, liver, and plasma but was not altered by PF8380 indicating that conversion of LysoPC 18:0 to LPA 18:0 was autotaxin independent. We conclude that i) intestinally derived unsaturated (but not saturated) LPA can cause atherosclerosis in LDLR−/− mice, and ii) autotaxin mediates the conversion of unsaturated (but not saturated) LysoPC to LPA. Our laboratories have been studying apoA-I mimetic peptides containing 18 amino acids for more than a decade (1Reddy S.T. Navab M. Anantharamaiah G.M. Fogelman A.M. Searching for a successful HDL-based treatment strategy.Biochim. Biophys. Acta. 2014; 1841: 162-167Crossref PubMed Scopus (22) Google Scholar). As a result of the success of the 4F peptide (peptide Ac-D-W-F-K-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH2) in multiple animal models of disease (2Navab M. Shechter I. Anantharamaiah G.M. Reddy S.T. Van Lenten B.J. Fogelman A.M. Structure and function of HDL mimetics.Arterioscler. Thromb. Vasc. Biol. 2010; 30: 164-168Crossref PubMed Scopus (94) Google Scholar), clinical trials were undertaken with the 4F peptide that resulted in three reports (3Bloedon L.T. Dunbar R. Duffy D. Pinell-Salles P. Norris R. DeGroot B.J. Movva R. Navab M. Fogelman A.M. Rader D.J. Safety, pharmacokinetics, and pharmacodynamics of oral apoA-I mimetic peptide D-4F in high-risk cardiovascular patients.J. Lipid Res. 2008; 49: 1344-1352Abstract Full Text Full Text PDF PubMed Scopus (262) Google Scholar, 4Dunbar R.L. Bloedon L.T. Duffy D. Norris R.B. Movva R. Navab M. Fogelman A.M. Rader D.J. Daily oral administration of the apolipoprotein A-I mimetic peptide D-4F in patients with coronary heart disease or equivalent risk improves high-density lipoprotein anti-inflammatory function (Abstract).J. Am. Coll. Cardiol. 2007; 49Google Scholar, 5Watson C.E. Weissbach N. Kjems L. Ayalasomayajula S. Zhang Y. Chang I. Navab M. Hama S. Hough G. Reddy S.T. et al.Treatment of patients with cardiovascular disease with L-4F, an apoA-1 mimetic, did not improve select biomarkers of HDL function.J. Lipid Res. 2011; 52: 361-373Abstract Full Text Full Text PDF PubMed Scopus (128) Google Scholar). Two of these reports demonstrated efficacy, as measured by improvement in HDL anti-inflammatory properties, when the peptide was administered orally at high doses, despite achieving very low plasma peptide levels (3Bloedon L.T. Dunbar R. Duffy D. Pinell-Salles P. Norris R. DeGroot B.J. Movva R. Navab M. Fogelman A.M. Rader D.J. Safety, pharmacokinetics, and pharmacodynamics of oral apoA-I mimetic peptide D-4F in high-risk cardiovascular patients.J. Lipid Res. 2008; 49: 1344-1352Abstract Full Text Full Text PDF PubMed Scopus (262) Google Scholar, 4Dunbar R.L. Bloedon L.T. Duffy D. Norris R.B. Movva R. Navab M. Fogelman A.M. Rader D.J. Daily oral administration of the apolipoprotein A-I mimetic peptide D-4F in patients with coronary heart disease or equivalent risk improves high-density lipoprotein anti-inflammatory function (Abstract).J. Am. Coll. Cardiol. 2007; 49Google Scholar). A third report described clinical trials in which low doses of peptide were administered intravenously or subcutaneously in order to achieve high plasma peptide levels with these low doses (5Watson C.E. Weissbach N. Kjems L. Ayalasomayajula S. Zhang Y. Chang I. Navab M. Hama S. Hough G. Reddy S.T. et al.Treatment of patients with cardiovascular disease with L-4F, an apoA-1 mimetic, did not improve select biomarkers of HDL function.J. Lipid Res. 2011; 52: 361-373Abstract Full Text Full Text PDF PubMed Scopus (128) Google Scholar). Despite achieving high plasma peptide levels with these low doses, the third report was negative in terms of efficacy, as measured by the lack of improvement in HDL anti-inflammatory properties. The low doses used in the third report (5Watson C.E. Weissbach N. Kjems L. Ayalasomayajula S. Zhang Y. Chang I. Navab M. Hama S. Hough G. Reddy S.T. et al.Treatment of patients with cardiovascular disease with L-4F, an apoA-1 mimetic, did not improve select biomarkers of HDL function.J. Lipid Res. 2011; 52: 361-373Abstract Full Text Full Text PDF PubMed Scopus (128) Google Scholar) had been tested in the first clinical trial, but these low doses were found not to be effective (3Bloedon L.T. Dunbar R. Duffy D. Pinell-Salles P. Norris R. DeGroot B.J. Movva R. Navab M. Fogelman A.M. Rader D.J. Safety, pharmacokinetics, and pharmacodynamics of oral apoA-I mimetic peptide D-4F in high-risk cardiovascular patients.J. Lipid Res. 2008; 49: 1344-1352Abstract Full Text Full Text PDF PubMed Scopus (262) Google Scholar). To understand the differing clinical trial results, we returned to mouse studies. In the first of these mouse studies, the amount of peptide in the feces predicted efficacy as measured by improvement in HDL anti-inflammatory properties and by decreases in plasma serum amyloid A (SAA) levels, but the plasma peptide levels did not predict efficacy (6Navab M. Reddy S.T. Anantharamaiah G.M. Imaizumi S. Hough G. Hama S. Fogelman A.M. Intestine may be a major site of action for the apoA-I mimetic peptide 4F whether administered subcutaneously or orally.J. Lipid Res. 2011; 52: 1200-1210Abstract Full Text Full Text PDF PubMed Scopus (62) Google Scholar). In the next study, the peptide concentration in the small intestine of LDL receptor null (LDLR−/−) mice on a Western diet (WD) predicted efficacy as measured by the ability of the peptide to reduce tissue and plasma levels of proinflammatory oxidized metabolites of arachidonic and linoleic acids and by plasma SAA levels, but the plasma peptide levels again did not predict efficacy (7Navab M. Reddy S.T. Anantharamaiah G.M. Hough G. Buga G.M. Danciger J. Fogelman A.M. D-4F-mediated reduction in metabolites of arachidonic and linoleic acids in the small intestine is associated with decreased inflammation in low-density lipoprotein receptor-null mice.J. Lipid Res. 2012; 53: 437-445Abstract Full Text Full Text PDF PubMed Scopus (57) Google Scholar). In these mouse studies (6Navab M. Reddy S.T. Anantharamaiah G.M. Imaizumi S. Hough G. Hama S. Fogelman A.M. Intestine may be a major site of action for the apoA-I mimetic peptide 4F whether administered subcutaneously or orally.J. Lipid Res. 2011; 52: 1200-1210Abstract Full Text Full Text PDF PubMed Scopus (62) Google Scholar, 7Navab M. Reddy S.T. Anantharamaiah G.M. Hough G. Buga G.M. Danciger J. Fogelman A.M. D-4F-mediated reduction in metabolites of arachidonic and linoleic acids in the small intestine is associated with decreased inflammation in low-density lipoprotein receptor-null mice.J. Lipid Res. 2012; 53: 437-445Abstract Full Text Full Text PDF PubMed Scopus (57) Google Scholar), the dose required for efficacy was far above the highest dose tested in the human clinical trials that did not demonstrate efficacy (5Watson C.E. Weissbach N. Kjems L. Ayalasomayajula S. Zhang Y. Chang I. Navab M. Hama S. Hough G. Reddy S.T. et al.Treatment of patients with cardiovascular disease with L-4F, an apoA-1 mimetic, did not improve select biomarkers of HDL function.J. Lipid Res. 2011; 52: 361-373Abstract Full Text Full Text PDF PubMed Scopus (128) Google Scholar). Additionally, we noted that the effective dose of these peptides tested in rabbits as measured by improvement in HDL anti-inflammatory properties, plasma SAA levels, and aortic atherosclerosis was also higher than the doses used in the third study (8Van Lenten B.J. Wagner A.C. Navab M. Anantharamaiah G.M. Hama S. Reddy S.T. Fogelman A.M. Lipoprotein inflammatory properties and serum amyloid A levels but not cholesterol levels predict lesion area in cholesterol-fed rabbits.J. Lipid Res. 2007; 48: 2344-2353Abstract Full Text Full Text PDF PubMed Scopus (96) Google Scholar). These studies demonstrated a significant correlation between the anti-inflammatory properties of HDL and plasma SAA levels (P < 0.0001), a significant correlation between the anti-inflammatory properties of HDL and aortic atherosclerosis (P = 0.002), and a significant correlation between plasma SAA levels and aortic atherosclerosis (P = 0.0079) (8Van Lenten B.J. Wagner A.C. Navab M. Anantharamaiah G.M. Hama S. Reddy S.T. Fogelman A.M. Lipoprotein inflammatory properties and serum amyloid A levels but not cholesterol levels predict lesion area in cholesterol-fed rabbits.J. Lipid Res. 2007; 48: 2344-2353Abstract Full Text Full Text PDF PubMed Scopus (96) Google Scholar). In normolipidemic monkeys, the dose required for efficacy as measured by improvement in HDL anti-inflammatory properties was also higher than the doses used in the third report (9Navab M. Anantharamaiah G.M. Reddy S.T. Van Lenten B.J. Ansell B.J. Fonarow G.C. Vahabzadeh K. Hama S. Hough G. Kamranpour N. et al.The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL.J. Lipid Res. 2004; 45: 993-1007Abstract Full Text Full Text PDF PubMed Scopus (570) Google Scholar, 10Navab M. Anantharamaiah G.M. Hama S. Hough G. Reddy S.T. Frank J.S. Garber D.W. Handattu S. Fogelman A.M. D-4F and statins synergize to render HDL anti-inflammatory in mice and monkeys and cause lesion regression in old apolipoprotein E-null mice.Arterioscler. Thromb. Vasc. Biol. 2005; 25: 1426-1432Crossref PubMed Scopus (143) Google Scholar). There were two reasons that a low dose of peptide was chosen for the clinical trials described in the third report, which did not demonstrate efficacy (5Watson C.E. Weissbach N. Kjems L. Ayalasomayajula S. Zhang Y. Chang I. Navab M. Hama S. Hough G. Reddy S.T. et al.Treatment of patients with cardiovascular disease with L-4F, an apoA-1 mimetic, did not improve select biomarkers of HDL function.J. Lipid Res. 2011; 52: 361-373Abstract Full Text Full Text PDF PubMed Scopus (128) Google Scholar). First, because of the need to chemically synthesize the 4F peptides, the cost of production was very high. Second, there was a mistaken belief that the peptides act primarily in the plasma, and that the level of peptide in plasma was the critical success factor. Our studies subsequent to the third report (5Watson C.E. Weissbach N. Kjems L. Ayalasomayajula S. Zhang Y. Chang I. Navab M. Hama S. Hough G. Reddy S.T. et al.Treatment of patients with cardiovascular disease with L-4F, an apoA-1 mimetic, did not improve select biomarkers of HDL function.J. Lipid Res. 2011; 52: 361-373Abstract Full Text Full Text PDF PubMed Scopus (128) Google Scholar) suggested that high doses of peptide (40–100 mg/kg/day) must be delivered to the small intestine in order to achieve efficacy (6Navab M. Reddy S.T. Anantharamaiah G.M. Imaizumi S. Hough G. Hama S. Fogelman A.M. Intestine may be a major site of action for the apoA-I mimetic peptide 4F whether administered subcutaneously or orally.J. Lipid Res. 2011; 52: 1200-1210Abstract Full Text Full Text PDF PubMed Scopus (62) Google Scholar, 7Navab M. Reddy S.T. Anantharamaiah G.M. Hough G. Buga G.M. Danciger J. Fogelman A.M. D-4F-mediated reduction in metabolites of arachidonic and linoleic acids in the small intestine is associated with decreased inflammation in low-density lipoprotein receptor-null mice.J. Lipid Res. 2012; 53: 437-445Abstract Full Text Full Text PDF PubMed Scopus (57) Google Scholar). The peptides used in the three reports of human clinical trials (3Bloedon L.T. Dunbar R. Duffy D. Pinell-Salles P. Norris R. DeGroot B.J. Movva R. Navab M. Fogelman A.M. Rader D.J. Safety, pharmacokinetics, and pharmacodynamics of oral apoA-I mimetic peptide D-4F in high-risk cardiovascular patients.J. Lipid Res. 2008; 49: 1344-1352Abstract Full Text Full Text PDF PubMed Scopus (262) Google Scholar, 4Dunbar R.L. Bloedon L.T. Duffy D. Norris R.B. Movva R. Navab M. Fogelman A.M. Rader D.J. Daily oral administration of the apolipoprotein A-I mimetic peptide D-4F in patients with coronary heart disease or equivalent risk improves high-density lipoprotein anti-inflammatory function (Abstract).J. Am. Coll. Cardiol. 2007; 49Google Scholar, 5Watson C.E. Weissbach N. Kjems L. Ayalasomayajula S. Zhang Y. Chang I. Navab M. Hama S. Hough G. Reddy S.T. et al.Treatment of patients with cardiovascular disease with L-4F, an apoA-1 mimetic, did not improve select biomarkers of HDL function.J. Lipid Res. 2011; 52: 361-373Abstract Full Text Full Text PDF PubMed Scopus (128) Google Scholar) contained blocked end groups, which can only be added by chemical synthesis. The cost of producing such chemically synthesized peptides for use at these high doses is prohibitive. Therefore, we searched for and found a peptide [peptide D-W-L-K-A-F-Y-D-K-F-F-E-K-F-K-E-F-F without blocked end groups (6F peptide)] that showed efficacy in mice as measured by plasma SAA levels and aortic atherosclerosis similar to the 4F peptides with blocked end groups (11Chattopadhyay A. Navab M. Hough G. Gao F. Meriwether D. Grijalva V. Springstead J.R. Palgunachari M.N. Namiri-Kalantari R. Su F. et al.A novel approach to oral apoA-I mimetic therapy.J. Lipid Res. 2013; 54 ([Erratum. 2013. J. Lipid Res. 54: 3220.]): 995-1010Abstract Full Text Full Text PDF PubMed Scopus (79) Google Scholar). Peptides that require blocked end groups for efficacy cannot be expressed as a transgene. Because the 6F peptide did not require blocked end groups for efficacy, we expressed 6F peptide in transgenic tomatoes (Tg6F tomatoes). When freeze-dried and fed to LDLR−/− mice on WD at only 2.2% by weight of the diet, Tg6F was highly effective in ameliorating dyslipidemia and atherosclerosis (11Chattopadhyay A. Navab M. Hough G. Gao F. Meriwether D. Grijalva V. Springstead J.R. Palgunachari M.N. Namiri-Kalantari R. Su F. et al.A novel approach to oral apoA-I mimetic therapy.J. Lipid Res. 2013; 54 ([Erratum. 2013. J. Lipid Res. 54: 3220.]): 995-1010Abstract Full Text Full Text PDF PubMed Scopus (79) Google Scholar). Feeding control tomatoes that were either wild type or made transgenic with the same vector, but containing a sequence for the expression of a control marker protein (β-glucuronidase) instead of 6F peptide, was not effective (11Chattopadhyay A. Navab M. Hough G. Gao F. Meriwether D. Grijalva V. Springstead J.R. Palgunachari M.N. Namiri-Kalantari R. Su F. et al.A novel approach to oral apoA-I mimetic therapy.J. Lipid Res. 2013; 54 ([Erratum. 2013. J. Lipid Res. 54: 3220.]): 995-1010Abstract Full Text Full Text PDF PubMed Scopus (79) Google Scholar). The amelioration of dyslipidemia by Tg6F differed from earlier studies with the 4F peptide. The 4F peptide did not improve dyslipidemia but did improve HDL anti-inflammatory properties, plasma SAA levels, and atherosclerosis in animal models (1Reddy S.T. Navab M. Anantharamaiah G.M. Fogelman A.M. Searching for a successful HDL-based treatment strategy.Biochim. Biophys. Acta. 2014; 1841: 162-167Crossref PubMed Scopus (22) Google Scholar). After feeding the mice Tg6F tomatoes, intact 6F peptide was found in the small intestine, but the levels of 6F peptide were below the level of detection in the plasma (11Chattopadhyay A. Navab M. Hough G. Gao F. Meriwether D. Grijalva V. Springstead J.R. Palgunachari M.N. Namiri-Kalantari R. Su F. et al.A novel approach to oral apoA-I mimetic therapy.J. Lipid Res. 2013; 54 ([Erratum. 2013. J. Lipid Res. 54: 3220.]): 995-1010Abstract Full Text Full Text PDF PubMed Scopus (79) Google Scholar). In the course of investigating possible mechanisms of action, we found that Tg6F tomatoes (but not control tomatoes) significantly reduced lysophosphatidic acid (LPA) levels in the small intestine (11Chattopadhyay A. Navab M. Hough G. Gao F. Meriwether D. Grijalva V. Springstead J.R. Palgunachari M.N. Namiri-Kalantari R. Su F. et al.A novel approach to oral apoA-I mimetic therapy.J. Lipid Res. 2013; 54 ([Erratum. 2013. J. Lipid Res. 54: 3220.]): 995-1010Abstract Full Text Full Text PDF PubMed Scopus (79) Google Scholar). Remarkably, the tissue content of unsaturated LPA in the small intestine significantly correlated with the extent of aortic atherosclerosis (11Chattopadhyay A. Navab M. Hough G. Gao F. Meriwether D. Grijalva V. Springstead J.R. Palgunachari M.N. Namiri-Kalantari R. Su F. et al.A novel approach to oral apoA-I mimetic therapy.J. Lipid Res. 2013; 54 ([Erratum. 2013. J. Lipid Res. 54: 3220.]): 995-1010Abstract Full Text Full Text PDF PubMed Scopus (79) Google Scholar). LPA is emerging as an important signaling molecule in diverse biological processes and disease states (11Chattopadhyay A. Navab M. Hough G. Gao F. Meriwether D. Grijalva V. Springstead J.R. Palgunachari M.N. Namiri-Kalantari R. Su F. et al.A novel approach to oral apoA-I mimetic therapy.J. Lipid Res. 2013; 54 ([Erratum. 2013. J. Lipid Res. 54: 3220.]): 995-1010Abstract Full Text Full Text PDF PubMed Scopus (79) Google Scholar, 12Panchatcharam M. Salous A.K. Brandon J. Miriyala S. Wheeler J. Patil P. Sunkara M. Morris A.J. Escalante-Alcadle D. Smyth S.S. Mice with targeted inactivation of Ppap2b in endothelial and hematopoietic cells display enhanced vascular inflammation and permeability.Arterioscler. Thromb. Vasc. Biol. 2014; 34: 837-845Crossref PubMed Scopus (60) Google Scholar, 13Lin M-E. Herr D.R. Chun J. Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance.Prostaglandins Other Lipid Mediat. 2010; 91: 130-138Crossref PubMed Scopus (294) Google Scholar, 14Xiang S.Y. Dusaban S.S. Brown J.H. Lysophospholipid receptor activation of RhoA and lipid signaling pathways.Biochim. Biophys. Acta. 2013; 1831: 213-222Crossref PubMed Scopus (61) Google Scholar, 15Ueda H. Matsunaga H. Olaposi O.I. Nagai J. Lysophosphatidic acid: chemical signature of neuropathic pain.Biochim. Biophys. Acta. 2013; 1831: 61-73Crossref PubMed Scopus (73) Google Scholar, 16Ren H. Panchatcharam M. Mueller P. Escalante-Alcalde D. Morris A.J. Smyth S.S. Lipid phosphate phosphatase (LPP3) and vascular development.Biochim. Biophys. Acta. 2013; 1831: 126-132Crossref PubMed Scopus (37) Google Scholar, 17Peyruchaud O. Leblanc R. David M. Pleiotropic activity of lysophosphatidic acid in bone metastasis.Biochim. Biophys. Acta. 2013; 1831: 99-104Crossref PubMed Scopus (29) Google Scholar, 18Mansell J.P. Blackburn J. Lysophosphatidic acid, human osteoblast formation, maturation and the role of 1α,25-Dihydroxyvitamin D3 (calcitriol).Biochim. Biophys. Acta. 2013; 1831: 105-108Crossref PubMed Scopus (15) Google Scholar, 19Sims S.M. Panupinthu N. Lapierre D.M. Pereverev A. Dixon S.J. Lysophosphatidic acid: a potential mediator of osteoblast-osteoclast signaling in bone.Biochim. Biophys. Acta. 2013; 1831: 109-116Crossref PubMed Scopus (39) Google Scholar, 20Sevastou I. Kaffe E. Mouratis M.A. Aidinis V. Lysoglycerophospholipids in chronic inflammatory disorders: the PLA(2)/LPC and ATX/LPA axes.Biochim. Biophys. Acta. 2013; 1831: 42-60Crossref PubMed Scopus (178) Google Scholar, 21Choi J.W. Chun J. Lysophospholipids and their receptors in the central nervous system.Biochim. Biophys. Acta. 2013; 1831: 20-32Crossref PubMed Scopus (187) Google Scholar, 22Yanagida K. Kurikawa Y. Shimizu T. Ishii S. Current progress in non-Edg family LPA receptor research.Biochim. Biophys. Acta. 2013; 1831: 33-41Crossref PubMed Scopus (70) Google Scholar, 23Aoki J. Inoue A. Okudaira S. Two pathways for lysophosphatidic acid production.Biochim. Biophys. Acta. 2008; 1781: 513-518Crossref PubMed Scopus (347) Google Scholar, 24Mills G.B. Moolenaar W.H. The emerging role of lysophosphatidic acid in cancer.Nat. Rev. Cancer. 2003; 3: 582-591Crossref PubMed Scopus (939) Google Scholar, 25Brindley D.N. Pilquil C. Lipid phosphate phosphatases and signaling.J. Lipid Res. 2009; 50: S225-S230Abstract Full Text Full Text PDF PubMed Scopus (161) Google Scholar, 26Zhou Z. Subramanian P. Sevilmis G. Globke B. Soehnlein O. Karshovska E. Megens R. Heyll K. Chun J. Saulnier-Blache J.S. et al.Lipoprotein-derived lysophosphatidic acid promotes atherosclerosis by releasing CXCL1 from the endothelium.Cell Metab. 2011; 13: 592-600Abstract Full Text Full Text PDF PubMed Scopus (159) Google Scholar, 27Panchatcharam M. Miriyala S. Salous A. Wheeler J. Dong A. Mueller P. Sunkara M. Escalante-Alcalde D. Morris A.J. Smyth S.S. Lipid phosphate phosphatase 3 negatively regulates smooth muscle cell phenotypic modulation to limit intimal hyperplasia.Arterioscler. Thromb. Vasc. Biol. 2013; 33: 52-59Crossref PubMed Scopus (39) Google Scholar, 28Schunkert H. König I.R. Kathiresan S. CARDIoGRAM Consortium Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease.Nat. Genet. 2011; 43: 333-338Crossref PubMed Scopus (1388) Google Scholar, 29Rai V. Toure F. Chitayat S. Pei R. Song F. Li Q. Zhang J. Rosario R. Ramasamy R. Chazin W.J. et al.Lysophosphatidic acid targets vascular and oncogenic pathways via RAGE signaling.J. Exp. Med. 2012; 209: 2339-2350Crossref PubMed Scopus (86) Google Scholar, 30Schober A. Siess W. Lysophosphatidic acid in atherosclerotic diseases.Br. J. Pharmacol. 2012; 167: 465-482Crossref PubMed Scopus (70) Google Scholar, 31Shen X. Wang W. Wang L. Houde C. Wu W. Tudor M. Thompson J.R. Sisk C.M. Hubbard B. Li J. Identification of genes affecting apolipoprotein B secretion following siRNA-mediated gene knockdown in primary human hepatocytes.Atherosclerosis. 2012; 222: 154-157Abstract Full Text Full Text PDF PubMed Scopus (15) Google Scholar, 32Dohi T. Miyauchi K. Ohkawa R. Nakamura K. Kurano M. Kishimoto T. Yanagisawa N. Ogita M. Miyazaki T. Nishino A. et al.Increased lysophosphatidic acid levels in culprit coronary arteries of patients with acute coronary syndrome.Atherosclerosis. 2013; 229: 192-197Abstract Full Text Full Text PDF PubMed Scopus (43) Google Scholar, 33Natarajan V. Scribner W.M. Hart C.M. Parthasarathy S. Oxidized low density lipoprotein-mediated activation of phospholipase D in smooth muscle cells: a possible role in cell proliferation and atherogenesis.J. Lipid Res. 1995; 36: 2005-2016Abstract Full Text PDF PubMed Google Scholar, 34Chen C. Ochoa L.N. Kagan A. Chai H. Liang Z. Lin P.H. Yao Z. Lysophosphatidic acid causes endothelial dysfunction in porcine coronary arteries and human coronary artery endothelial cells.Atherosclerosis. 2012; 222: 74-83Abstract Full Text Full Text PDF PubMed Scopus (25) Google Scholar, 35Llordá J. Angeli V. Liu J. Trogan E. Fisher E.A. Randolph G.J. Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques.Proc. Natl. Acad. Sci. USA. 2004; 101: 11779-11784Crossref PubMed Scopus (434) Google Scholar, 36Bot M. Bot I. Lopez-Vales R. van de Lest C.H.A. Saulnier-Blache J.S. Helms J.B. David S. van Berkel T.J.C. Biessen E.A.L. Atherosclerotic lesion progression changes lysophosphatidic acid homeostasis to favor its accumulation.Am. J. Pathol. 2010; 176: 3073-3084Abstract Full Text Full Text PDF PubMed Scopus (56) Google Scholar, 37Bot M. de Jager S.C.A. MacAleese L. Lagraauw H.M. van Berkel T.J.C. Quax P.H.A. Kuiper J. Heeren R.M.A. Biessen E.A.L. Bot I. Lysophosphatidic acid triggers mast cell-driven atherosclerotic plaque destabilization by increasing vascular inflammation.J. Lipid Res. 2013; 54: 1265-1274Abstract Full Text Full Text PDF PubMed Scopus (51) Google Scholar, 38Smyth S.S. Mueller P. Yang F. Brandon J.A. Morris A.J. Arguing the case for the autotaxin-lysophosphatidic acid-lipid phosphate phosphatase 3-signaling nexus in the development and complications of atherosclerosis.Arterioscler. Thromb. Vasc. Biol. 2014; 34: 479-486Crossref PubMed Scopus (47) Google Scholar), and its role in the pathogenesis of atherosclerosis has been emphasized in recent years (30Schober A. Siess W. Lysophosphatidic acid in atherosclerotic diseases.Br. J. Pharmacol. 2012; 167: 465-482Crossref PubMed Scopus (70) Google Scholar, 31Shen X. Wang W. Wang L. Houde C. Wu W. Tudor M. Thompson J.R. Sisk C.M. Hubbard B. Li J. Identification of genes affecting apolipoprotein B secretion following siRNA-mediated gene knockdown in primary human hepatocytes.Atherosclerosis. 2012; 222: 154-157Abstract Full Text Full Text PDF PubMed Scopus (15) Google Scholar, 32Dohi T. Miyauchi K. Ohkawa R. Nakamura K. Kurano M. Kishimoto T. Yanagisawa N. Ogita M. Miyazaki T. Nishino A. et al.Increased lysophosphatidic acid levels in culprit coronary arteries of patients with acute coronary syndrome.Atherosclerosis. 2013; 229: 192-197Abstract Full Text Full Text PDF PubMed Scopus (43) Google Scholar, 33Natarajan V. Scribner W.M. Hart C.M. Parthasarathy S. Oxidized low density lipoprotein-mediated activation of phospholipase D in smooth muscle cells: a possible role in cell proliferation and atherogenesis.J. Lipid Res. 1995; 36: 2005-2016Abstract Full Text PDF PubMed Google Scholar, 34Chen C. Ochoa L.N. Kagan A. Chai H. Liang Z. Lin P.H. Yao Z. Lysophosphatidic acid causes endothelial dysfunction in porcine coronary arteries and human coronary artery endothelial cells.Atherosclerosis. 2012; 222: 74-83Abstract Full Text Full Text PDF PubMed Scopus (25) Google Scholar, 35Llordá J. Angeli V. Liu J. Trogan E. Fisher E.A. Randolph G.J. Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques.Proc. Natl. Acad. Sci. USA. 2004; 101: 11779-11784Crossref PubMed Scopus (434) Google Scholar, 36Bot M. Bot I. Lopez-Vales R. van de Lest C.H.A. Saulnier-Blache J.S. Helms J.B. David S. van Berkel T.J.C. Biessen E.A.L. Atherosclerotic lesion progression changes lysophosphatidic acid homeostasis to favor its accumulation.Am. J. Pathol. 2010; 176: 3073-3084Abstract Full Text Full Text PDF PubMed Scopus (56) Google Scholar, 37Bot M. de Jager S.C.A. MacAleese L. Lagraauw H.M. van Berkel T.J.C. Quax P.H.A. Kuiper J. Heeren R.M.A. Biessen E.A.L. Bot I. Lysophosphatidic acid triggers mast cell-driven atherosclerotic plaque destabilization by increasing vascular inflammation.J. Lipid Res. 2013; 54: 1265-1274Abstract Full Text Full Text PDF PubMed Scopus (51) Google Scholar, 38Smyth S.S. Mueller P. Yang F. Brandon J.A. Morris A.J. Arguing the case for the autotaxin-lysophosphatidic acid-lipid phosphate phosphatase 3-signaling nexus in the development and complications of atherosclerosis.Arterioscler. Thromb. Vasc. Biol. 2014; 34: 479-486Crossref PubMed Scopus (47) Google Scholar, 39Navab M. Hough G. Buga G.M. Su F. Wagner A.C. Meriwether D. Chattopadhyay A. Gao F. Grijalva V. Danciger J.S. et al.Transgenic 6F tomatoes act on the small intestine to prevent systemic inflammation and dyslipidemia caused by Western diet and intestinally derived lysophosphatidic acid.J. Lipid Res. 2013; 54: 3403-3418Abstract Full Text Full Text PDF PubMed Scopus (58) Google Scholar, 40Remaley A.T. Tomatoes, lysophosphatidic acid and the small intestine: new pieces in the puzzle of apolipoprotein mimetic peptides?.J. Lipid Res. 2013; 54: 3223-3226Abstract Full Text Full Text PDF PubMed Scopus (10) Google Scholar). There are two major pathways for the formation of LPA (23Aoki J. Inoue A. Okudaira S. Two pathways for lysophosphatidic acid production.Biochim. Biophys. Acta. 2008; 1781: 513-518Crossref PubMed Scopus (347) Google Scholar). The first pathway is illustrated by the example of phosphatidylcholine being acted on by phospholipase A1 (PLA1) or phospholipase A2 (PLA2) removing the acyl group from the sn-1 or sn-2 positions, respectively. Subsequently, lysophospholipase D (autotaxin) converts lysophosphatidylcholine (LysoPC) to LPA by removing choline from the sn-3 position of the lysophosphatidylcholine. The second pathway is illustrated by the exa" @default.
- W2121323318 created "2016-06-24" @default.
- W2121323318 creator A5008080313 @default.
- W2121323318 creator A5009388960 @default.
- W2121323318 creator A5014660763 @default.
- W2121323318 creator A5018197890 @default.
- W2121323318 creator A5019007182 @default.
- W2121323318 creator A5023681490 @default.
- W2121323318 creator A5026261771 @default.
- W2121323318 creator A5038343851 @default.
- W2121323318 creator A5040164343 @default.
- W2121323318 creator A5040270610 @default.
- W2121323318 creator A5047899027 @default.
- W2121323318 creator A5051707104 @default.
- W2121323318 creator A5056009731 @default.
- W2121323318 date "2015-04-01" @default.
- W2121323318 modified "2023-10-10" @default.
- W2121323318 title "Source and role of intestinally derived lysophosphatidic acid in dyslipidemia and atherosclerosis" @default.
- W2121323318 cites W1537039201 @default.
- W2121323318 cites W1545230814 @default.
- W2121323318 cites W1546139069 @default.
- W2121323318 cites W1607374610 @default.
- W2121323318 cites W1969870436 @default.
- W2121323318 cites W1971756903 @default.
- W2121323318 cites W1973262678 @default.
- W2121323318 cites W1974455553 @default.
- W2121323318 cites W1977470737 @default.
- W2121323318 cites W1977984804 @default.
- W2121323318 cites W1984178317 @default.
- W2121323318 cites W1989787117 @default.
- W2121323318 cites W1992203600 @default.
- W2121323318 cites W1994001535 @default.
- W2121323318 cites W1994474862 @default.
- W2121323318 cites W1995304881 @default.
- W2121323318 cites W1998120603 @default.
- W2121323318 cites W2001712980 @default.
- W2121323318 cites W2008207451 @default.
- W2121323318 cites W2013132263 @default.
- W2121323318 cites W2023547815 @default.
- W2121323318 cites W2024119917 @default.
- W2121323318 cites W2031190080 @default.
- W2121323318 cites W2038052308 @default.
- W2121323318 cites W2042281019 @default.
- W2121323318 cites W2047833721 @default.
- W2121323318 cites W2048234788 @default.
- W2121323318 cites W2048848145 @default.
- W2121323318 cites W2055285569 @default.
- W2121323318 cites W2058844250 @default.
- W2121323318 cites W2061430401 @default.
- W2121323318 cites W2062494874 @default.
- W2121323318 cites W2066458078 @default.
- W2121323318 cites W2071034679 @default.
- W2121323318 cites W2079078079 @default.
- W2121323318 cites W2081141873 @default.
- W2121323318 cites W2081779198 @default.
- W2121323318 cites W2082424812 @default.
- W2121323318 cites W2084676297 @default.
- W2121323318 cites W2092205926 @default.
- W2121323318 cites W2108906644 @default.
- W2121323318 cites W2112848098 @default.
- W2121323318 cites W2118829909 @default.
- W2121323318 cites W2121028592 @default.
- W2121323318 cites W2121733433 @default.
- W2121323318 cites W2121922616 @default.
- W2121323318 cites W2122320293 @default.
- W2121323318 cites W2124020839 @default.
- W2121323318 cites W2127369456 @default.
- W2121323318 cites W2133543350 @default.
- W2121323318 cites W2137475525 @default.
- W2121323318 cites W2137513062 @default.
- W2121323318 cites W2146018477 @default.
- W2121323318 cites W2147316710 @default.
- W2121323318 cites W2149348028 @default.
- W2121323318 cites W2149557213 @default.
- W2121323318 cites W2150961941 @default.
- W2121323318 cites W2152431017 @default.
- W2121323318 cites W2152829004 @default.
- W2121323318 cites W2152855566 @default.
- W2121323318 cites W2156248658 @default.
- W2121323318 cites W2163289904 @default.
- W2121323318 cites W2164390141 @default.
- W2121323318 cites W2165333799 @default.
- W2121323318 cites W2167409766 @default.
- W2121323318 cites W2325931448 @default.
- W2121323318 cites W2335593219 @default.
- W2121323318 cites W2388045460 @default.
- W2121323318 doi "https://doi.org/10.1194/jlr.m056614" @default.
- W2121323318 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4373744" @default.
- W2121323318 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25646365" @default.
- W2121323318 hasPublicationYear "2015" @default.
- W2121323318 type Work @default.
- W2121323318 sameAs 2121323318 @default.
- W2121323318 citedByCount "42" @default.
- W2121323318 countsByYear W21213233182015 @default.
- W2121323318 countsByYear W21213233182016 @default.
- W2121323318 countsByYear W21213233182017 @default.
- W2121323318 countsByYear W21213233182018 @default.
- W2121323318 countsByYear W21213233182019 @default.