Matches in SemOpenAlex for { <https://semopenalex.org/work/W2121551152> ?p ?o ?g. }
- W2121551152 endingPage "3960" @default.
- W2121551152 startingPage "3953" @default.
- W2121551152 abstract "Large amount of research efforts have been focused on estimating gene networks based on gene expression data to understand the functional basis of a living organism. Such networks are often obtained by considering pairwise correlations between genes, thus may not reflect the true connectivity between genes. By treating gene expressions as quantitative traits while considering genetic markers, genetical genomics analysis has shown its power in enhancing the understanding of gene regulations. Previous works have shown the improved performance on estimating the undirected network graphical structure by incorporating genetic markers as covariates. Knowing that gene expressions are often due to directed regulations, it is more meaningful to estimate the directed graphical network.In this article, we introduce a covariate-adjusted Gaussian graphical model to estimate the Markov equivalence class of the directed acyclic graphs (DAGs) in a genetical genomics analysis framework. We develop a two-stage estimation procedure to first estimate the regression coefficient matrix by [Formula: see text] penalization. The estimated coefficient matrix is then used to estimate the mean values in our multi-response Gaussian model to estimate the regulatory networks of gene expressions using PC-algorithm. The estimation consistency for high dimensional sparse DAGs is established. Simulations are conducted to demonstrate our theoretical results. The method is applied to a human Alzheimer's disease dataset in which differential DAGs are identified between cases and controls. R code for implementing the method can be downloaded at http://www.stt.msu.edu/∼cui.R code for implementing the method is freely available at http://www.stt.msu.edu/∼cui/software.html." @default.
- W2121551152 created "2016-06-24" @default.
- W2121551152 creator A5003993055 @default.
- W2121551152 creator A5087339898 @default.
- W2121551152 date "2015-09-02" @default.
- W2121551152 modified "2023-10-10" @default.
- W2121551152 title "Learning directed acyclic graphical structures with genetical genomics data" @default.
- W2121551152 cites W1709414455 @default.
- W2121551152 cites W1999463674 @default.
- W2121551152 cites W2004185360 @default.
- W2121551152 cites W2018747370 @default.
- W2121551152 cites W2081746825 @default.
- W2121551152 cites W2084847607 @default.
- W2121551152 cites W2086331397 @default.
- W2121551152 cites W2094239847 @default.
- W2121551152 cites W2101889545 @default.
- W2121551152 cites W2111061246 @default.
- W2121551152 cites W2115984935 @default.
- W2121551152 cites W2118308505 @default.
- W2121551152 cites W2132555912 @default.
- W2121551152 cites W2143891888 @default.
- W2121551152 cites W2148289138 @default.
- W2121551152 cites W2150002853 @default.
- W2121551152 cites W3098834468 @default.
- W2121551152 doi "https://doi.org/10.1093/bioinformatics/btv513" @default.
- W2121551152 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26338766" @default.
- W2121551152 hasPublicationYear "2015" @default.
- W2121551152 type Work @default.
- W2121551152 sameAs 2121551152 @default.
- W2121551152 citedByCount "13" @default.
- W2121551152 countsByYear W21215511522015 @default.
- W2121551152 countsByYear W21215511522016 @default.
- W2121551152 countsByYear W21215511522017 @default.
- W2121551152 countsByYear W21215511522018 @default.
- W2121551152 countsByYear W21215511522019 @default.
- W2121551152 countsByYear W21215511522020 @default.
- W2121551152 countsByYear W21215511522021 @default.
- W2121551152 countsByYear W21215511522023 @default.
- W2121551152 crossrefType "journal-article" @default.
- W2121551152 hasAuthorship W2121551152A5003993055 @default.
- W2121551152 hasAuthorship W2121551152A5087339898 @default.
- W2121551152 hasBestOaLocation W21215511521 @default.
- W2121551152 hasConcept C104317684 @default.
- W2121551152 hasConcept C11413529 @default.
- W2121551152 hasConcept C119043178 @default.
- W2121551152 hasConcept C119857082 @default.
- W2121551152 hasConcept C121332964 @default.
- W2121551152 hasConcept C124101348 @default.
- W2121551152 hasConcept C141231307 @default.
- W2121551152 hasConcept C154945302 @default.
- W2121551152 hasConcept C155846161 @default.
- W2121551152 hasConcept C161078062 @default.
- W2121551152 hasConcept C163716315 @default.
- W2121551152 hasConcept C184898388 @default.
- W2121551152 hasConcept C189206191 @default.
- W2121551152 hasConcept C2776436953 @default.
- W2121551152 hasConcept C41008148 @default.
- W2121551152 hasConcept C54355233 @default.
- W2121551152 hasConcept C62520636 @default.
- W2121551152 hasConcept C70721500 @default.
- W2121551152 hasConcept C74197172 @default.
- W2121551152 hasConcept C86803240 @default.
- W2121551152 hasConceptScore W2121551152C104317684 @default.
- W2121551152 hasConceptScore W2121551152C11413529 @default.
- W2121551152 hasConceptScore W2121551152C119043178 @default.
- W2121551152 hasConceptScore W2121551152C119857082 @default.
- W2121551152 hasConceptScore W2121551152C121332964 @default.
- W2121551152 hasConceptScore W2121551152C124101348 @default.
- W2121551152 hasConceptScore W2121551152C141231307 @default.
- W2121551152 hasConceptScore W2121551152C154945302 @default.
- W2121551152 hasConceptScore W2121551152C155846161 @default.
- W2121551152 hasConceptScore W2121551152C161078062 @default.
- W2121551152 hasConceptScore W2121551152C163716315 @default.
- W2121551152 hasConceptScore W2121551152C184898388 @default.
- W2121551152 hasConceptScore W2121551152C189206191 @default.
- W2121551152 hasConceptScore W2121551152C2776436953 @default.
- W2121551152 hasConceptScore W2121551152C41008148 @default.
- W2121551152 hasConceptScore W2121551152C54355233 @default.
- W2121551152 hasConceptScore W2121551152C62520636 @default.
- W2121551152 hasConceptScore W2121551152C70721500 @default.
- W2121551152 hasConceptScore W2121551152C74197172 @default.
- W2121551152 hasConceptScore W2121551152C86803240 @default.
- W2121551152 hasIssue "24" @default.
- W2121551152 hasLocation W21215511521 @default.
- W2121551152 hasLocation W21215511522 @default.
- W2121551152 hasOpenAccess W2121551152 @default.
- W2121551152 hasPrimaryLocation W21215511521 @default.
- W2121551152 hasRelatedWork W2158455641 @default.
- W2121551152 hasRelatedWork W2291131907 @default.
- W2121551152 hasRelatedWork W2335930754 @default.
- W2121551152 hasRelatedWork W2351335541 @default.
- W2121551152 hasRelatedWork W2352418439 @default.
- W2121551152 hasRelatedWork W2765396870 @default.
- W2121551152 hasRelatedWork W2963174245 @default.
- W2121551152 hasRelatedWork W3195992931 @default.
- W2121551152 hasRelatedWork W4226068125 @default.
- W2121551152 hasRelatedWork W4287021714 @default.
- W2121551152 hasVolume "31" @default.