Matches in SemOpenAlex for { <https://semopenalex.org/work/W2122050444> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2122050444 endingPage "7" @default.
- W2122050444 startingPage "1" @default.
- W2122050444 abstract "RNA structure prediction is one of the major topics in bioinformatics. Among the various RNA structures, pseudoknots are the most complex and unique structure. Various methods have been used for modeling RNA pseudoknotted secondary structure. In this paper a new model for prediction of RNA pseudoknot structure has been proposed. In this model, features of two existing techniques, i.e. neural network and grammar are combined. The advantage of grammar, identification based on rules is combined with the strength of a neural network to learn. An Elman neural network is used to learn the context free grammar that represents a pseudoknot. This Learning grammar network further identifies if the RNA sequence contains pseudoknot or not. Learning grammar helps in reducing the drawbacks of both neural network and grammar thus increasing the overall power of identifying sequences with pseudoknots. Highlights" @default.
- W2122050444 created "2016-06-24" @default.
- W2122050444 creator A5089267962 @default.
- W2122050444 creator A5091775389 @default.
- W2122050444 date "2012-09-25" @default.
- W2122050444 modified "2023-10-01" @default.
- W2122050444 title "Soft Computing based Model for Identification of Pseudoknots in RNA Sequence using Learning Grammar" @default.
- W2122050444 cites W1538129796 @default.
- W2122050444 cites W1558675754 @default.
- W2122050444 cites W1967914652 @default.
- W2122050444 cites W1983721296 @default.
- W2122050444 cites W1999955287 @default.
- W2122050444 cites W2003956388 @default.
- W2122050444 cites W2007644443 @default.
- W2122050444 cites W2011078969 @default.
- W2122050444 cites W2013195357 @default.
- W2122050444 cites W2031103735 @default.
- W2122050444 cites W2043427463 @default.
- W2122050444 cites W2069748910 @default.
- W2122050444 cites W2086509077 @default.
- W2122050444 cites W2087946919 @default.
- W2122050444 cites W2102854598 @default.
- W2122050444 cites W2103857131 @default.
- W2122050444 cites W2104141342 @default.
- W2122050444 cites W2122623226 @default.
- W2122050444 cites W2123241418 @default.
- W2122050444 cites W2124776405 @default.
- W2122050444 cites W2129499427 @default.
- W2122050444 cites W2129762633 @default.
- W2122050444 cites W2139889223 @default.
- W2122050444 cites W2156244955 @default.
- W2122050444 cites W2167240170 @default.
- W2122050444 cites W2169105524 @default.
- W2122050444 cites W2285257517 @default.
- W2122050444 cites W2387929676 @default.
- W2122050444 cites W2785550740 @default.
- W2122050444 cites W2912225506 @default.
- W2122050444 doi "https://doi.org/10.5120/8591-2344" @default.
- W2122050444 hasPublicationYear "2012" @default.
- W2122050444 type Work @default.
- W2122050444 sameAs 2122050444 @default.
- W2122050444 citedByCount "2" @default.
- W2122050444 countsByYear W21220504442018 @default.
- W2122050444 countsByYear W21220504442019 @default.
- W2122050444 crossrefType "journal-article" @default.
- W2122050444 hasAuthorship W2122050444A5089267962 @default.
- W2122050444 hasAuthorship W2122050444A5091775389 @default.
- W2122050444 hasBestOaLocation W21220504441 @default.
- W2122050444 hasConcept C116834253 @default.
- W2122050444 hasConcept C138885662 @default.
- W2122050444 hasConcept C154945302 @default.
- W2122050444 hasConcept C26022165 @default.
- W2122050444 hasConcept C2778112365 @default.
- W2122050444 hasConcept C41008148 @default.
- W2122050444 hasConcept C41895202 @default.
- W2122050444 hasConcept C54355233 @default.
- W2122050444 hasConcept C59822182 @default.
- W2122050444 hasConcept C86803240 @default.
- W2122050444 hasConceptScore W2122050444C116834253 @default.
- W2122050444 hasConceptScore W2122050444C138885662 @default.
- W2122050444 hasConceptScore W2122050444C154945302 @default.
- W2122050444 hasConceptScore W2122050444C26022165 @default.
- W2122050444 hasConceptScore W2122050444C2778112365 @default.
- W2122050444 hasConceptScore W2122050444C41008148 @default.
- W2122050444 hasConceptScore W2122050444C41895202 @default.
- W2122050444 hasConceptScore W2122050444C54355233 @default.
- W2122050444 hasConceptScore W2122050444C59822182 @default.
- W2122050444 hasConceptScore W2122050444C86803240 @default.
- W2122050444 hasIssue "9" @default.
- W2122050444 hasLocation W21220504441 @default.
- W2122050444 hasLocation W21220504442 @default.
- W2122050444 hasOpenAccess W2122050444 @default.
- W2122050444 hasPrimaryLocation W21220504441 @default.
- W2122050444 hasRelatedWork W1495145538 @default.
- W2122050444 hasRelatedWork W1597820897 @default.
- W2122050444 hasRelatedWork W2052747888 @default.
- W2122050444 hasRelatedWork W2355288082 @default.
- W2122050444 hasRelatedWork W2363804782 @default.
- W2122050444 hasRelatedWork W2388410760 @default.
- W2122050444 hasRelatedWork W3107474891 @default.
- W2122050444 hasRelatedWork W4248817909 @default.
- W2122050444 hasRelatedWork W4367048510 @default.
- W2122050444 hasRelatedWork W93241657 @default.
- W2122050444 hasVolume "54" @default.
- W2122050444 isParatext "false" @default.
- W2122050444 isRetracted "false" @default.
- W2122050444 magId "2122050444" @default.
- W2122050444 workType "article" @default.