Matches in SemOpenAlex for { <https://semopenalex.org/work/W2122113144> ?p ?o ?g. }
- W2122113144 endingPage "452" @default.
- W2122113144 startingPage "442" @default.
- W2122113144 abstract "Engineers and scientists often identify robust parameter design (RPD) as one of the most important process and quality improvement methods. Focused on determining the optimum operating conditions that facilitate target attainment with minimum variability, typical approaches to RPD use ordinary least squares methods to obtain response functions for the mean and variance by assuming that process data are normally distributed and exhibit reasonably low variability. Consequently, the sample mean and standard deviation are the most common estimators used in the initial tier of estimation, as they perform best when these assumptions hold. Realistically, however, industrial processes often exhibit high variability, particularly in mass production lines. If ignored, such conditions can cause the quality of the estimates obtained using the sample mean and standard deviation to deteriorate. This paper examines several alternatives to the sample mean and standard deviation, incorporating them into RPD modeling and optimization approaches to ascertain which tend to yield better solutions when highly variable conditions prevail. Monte Carlo simulation and numerical studies are used to compare the performances of the proposed methods with the traditional approach." @default.
- W2122113144 created "2016-06-24" @default.
- W2122113144 creator A5040851917 @default.
- W2122113144 creator A5061271782 @default.
- W2122113144 date "2013-01-01" @default.
- W2122113144 modified "2023-09-25" @default.
- W2122113144 title "Comparative studies on the high-variability embedded robust parameter design from the perspective of estimators" @default.
- W2122113144 cites W104866352 @default.
- W2122113144 cites W144724904 @default.
- W2122113144 cites W1479802788 @default.
- W2122113144 cites W1502310521 @default.
- W2122113144 cites W1894141034 @default.
- W2122113144 cites W1965906982 @default.
- W2122113144 cites W1968186635 @default.
- W2122113144 cites W1974363372 @default.
- W2122113144 cites W1974533558 @default.
- W2122113144 cites W1997342877 @default.
- W2122113144 cites W1998416915 @default.
- W2122113144 cites W2000736122 @default.
- W2122113144 cites W2003233920 @default.
- W2122113144 cites W2007081974 @default.
- W2122113144 cites W2012628772 @default.
- W2122113144 cites W2015771546 @default.
- W2122113144 cites W2016162807 @default.
- W2122113144 cites W2021273462 @default.
- W2122113144 cites W2029130744 @default.
- W2122113144 cites W2031994746 @default.
- W2122113144 cites W2038125062 @default.
- W2122113144 cites W2046509367 @default.
- W2122113144 cites W2049378391 @default.
- W2122113144 cites W2049454545 @default.
- W2122113144 cites W2050334918 @default.
- W2122113144 cites W2060622051 @default.
- W2122113144 cites W2065842496 @default.
- W2122113144 cites W2066862171 @default.
- W2122113144 cites W2073306695 @default.
- W2122113144 cites W2078914749 @default.
- W2122113144 cites W2079459991 @default.
- W2122113144 cites W2085228935 @default.
- W2122113144 cites W2085680114 @default.
- W2122113144 cites W2088412730 @default.
- W2122113144 cites W2094202051 @default.
- W2122113144 cites W2127916323 @default.
- W2122113144 cites W2148048263 @default.
- W2122113144 cites W2148347826 @default.
- W2122113144 cites W2150437128 @default.
- W2122113144 cites W2158475716 @default.
- W2122113144 cites W2171050536 @default.
- W2122113144 cites W4229530126 @default.
- W2122113144 cites W4232001557 @default.
- W2122113144 cites W4236852734 @default.
- W2122113144 cites W4255584840 @default.
- W2122113144 cites W4362131110 @default.
- W2122113144 cites W2007230568 @default.
- W2122113144 doi "https://doi.org/10.1016/j.cie.2012.10.012" @default.
- W2122113144 hasPublicationYear "2013" @default.
- W2122113144 type Work @default.
- W2122113144 sameAs 2122113144 @default.
- W2122113144 citedByCount "16" @default.
- W2122113144 countsByYear W21221131442013 @default.
- W2122113144 countsByYear W21221131442014 @default.
- W2122113144 countsByYear W21221131442017 @default.
- W2122113144 countsByYear W21221131442018 @default.
- W2122113144 countsByYear W21221131442019 @default.
- W2122113144 countsByYear W21221131442020 @default.
- W2122113144 countsByYear W21221131442021 @default.
- W2122113144 countsByYear W21221131442022 @default.
- W2122113144 countsByYear W21221131442023 @default.
- W2122113144 crossrefType "journal-article" @default.
- W2122113144 hasAuthorship W2122113144A5040851917 @default.
- W2122113144 hasAuthorship W2122113144A5061271782 @default.
- W2122113144 hasConcept C105795698 @default.
- W2122113144 hasConcept C121955636 @default.
- W2122113144 hasConcept C126255220 @default.
- W2122113144 hasConcept C129848803 @default.
- W2122113144 hasConcept C134306372 @default.
- W2122113144 hasConcept C144133560 @default.
- W2122113144 hasConcept C182365436 @default.
- W2122113144 hasConcept C185429906 @default.
- W2122113144 hasConcept C19499675 @default.
- W2122113144 hasConcept C196083921 @default.
- W2122113144 hasConcept C22679943 @default.
- W2122113144 hasConcept C31441030 @default.
- W2122113144 hasConcept C33923547 @default.
- W2122113144 hasConcept C41008148 @default.
- W2122113144 hasConcept C99656134 @default.
- W2122113144 hasConceptScore W2122113144C105795698 @default.
- W2122113144 hasConceptScore W2122113144C121955636 @default.
- W2122113144 hasConceptScore W2122113144C126255220 @default.
- W2122113144 hasConceptScore W2122113144C129848803 @default.
- W2122113144 hasConceptScore W2122113144C134306372 @default.
- W2122113144 hasConceptScore W2122113144C144133560 @default.
- W2122113144 hasConceptScore W2122113144C182365436 @default.
- W2122113144 hasConceptScore W2122113144C185429906 @default.
- W2122113144 hasConceptScore W2122113144C19499675 @default.
- W2122113144 hasConceptScore W2122113144C196083921 @default.
- W2122113144 hasConceptScore W2122113144C22679943 @default.
- W2122113144 hasConceptScore W2122113144C31441030 @default.