Matches in SemOpenAlex for { <https://semopenalex.org/work/W2122140352> ?p ?o ?g. }
- W2122140352 endingPage "828" @default.
- W2122140352 startingPage "821" @default.
- W2122140352 abstract "Ellagic acid (EA), a naturally occurring plant polyphenol possesses broad chemoprotective properties. Dietary EA has been shown to reduce the incidence of N-2-fluorenylacetamide-induced hepatocarcinogenesis in rats and N-nitrosomethylbenzylamine (NMBA)-induced rat esophageal tumors. In this study changes in the expression and activities of specific rat hepatic and esophageal mucosal cytochromes P450 (P450) and phase II enzymes following dietary EA treatment were investigated. Liver and esophageal mucosal microsomes and cytosol were prepared from three groups of Fisher 344 rats which were fed an AIN-76 diet containing no EA or 0.4 or 4.0 g/kg EA for 23 days. In the liver total P450 content decreased by up to 25% and P450 2E1-catalyzed p-nitrophenol hydroxylation decreased by 15%. No changes were observed in P450 1A1, 2B1 or 3A1/2 expression or activities or cytochrome b5 activity. P450 reductase activity decreased by up to 28%. Microsomal epoxide hydrolase (mEH) expression decreased by up to 85% after EA treatment, but mEH activities did not change. The hepatic phase II enzymes glutathione S-transferase (GST), NAD(P)H:quinone reductase [NAD-(P)H:QR] and UDP glucuronosyltransferase (UDPGT) activities increased by up to 26, 17 and 75% respectively. Assays for specific forms of GST indicated marked increases in the activities of isozymes 2-2 (190%), 4-4 (150%) and 5-5 (82%). In the rat esophageal mucosa only P450 1A1 could be detected by Western blot analysis and androstendione was the only P450 metabolite of testosterone detectable. However, there were no differences in the expression of P450 1A1, the formation of androstendione or NAD(P)H:QR activities between control and EA-fed rats in the esophagus. Although there was no significant decrease in overall GST activity, as measured with 1-chloro-2,4-dinitrobenzene (CDNB), there was a significant decrease in the activity of the 2-2 isozyme (66% of control). In vitro incubations showed that EA at a concentration of 100 microM inhibited P450 2E1, 1A1 and 2B1 activities by 87, 55 and 18% respectively, but did not affect 3A1/2 activity. Using standard steady-state kinetic analyses, EA was shown to be a potent non-competitive inhibitor of both liver microsomal ethoxyresorufin O-deethylase and p-nitrophenol hydroxylase activities, with apparent Ki values of approximately 55 and 14 microM respectively. In conclusion, these results demonstrate that EA causes a decrease in total hepatic P450 with a significant effect on hepatic P450 2E1, increases some hepatic phase II enzyme activities [GST, NAD-(P)H:QR and UDPGT] and decreases hepatic mEH expression. It also inhibits the catalytic activity of some P450 isozymes in vitro. Thus the chemoprotective effect of EA against various chemically induced cancers may involve decreases in the rates of metabolism of these carcinogens by phase I enzymes, due to both direct inhibition of catalytic activity and modulation of gene expression, in addition to effects on the expression of phase II enzymes, thereby enhancing the ability of the target tissues to detoxify the reactive intermediates." @default.
- W2122140352 created "2016-06-24" @default.
- W2122140352 creator A5025474639 @default.
- W2122140352 creator A5032442574 @default.
- W2122140352 creator A5054514835 @default.
- W2122140352 creator A5080522467 @default.
- W2122140352 creator A5081334626 @default.
- W2122140352 creator A5091841050 @default.
- W2122140352 date "1996-01-01" @default.
- W2122140352 modified "2023-10-16" @default.
- W2122140352 title "The effects of dietary ellagic acid on rat hepatic and esophageal mucosal cytochromes P450 and phase II enzymes" @default.
- W2122140352 cites W1178217335 @default.
- W2122140352 cites W1488511002 @default.
- W2122140352 cites W1493036774 @default.
- W2122140352 cites W1494928814 @default.
- W2122140352 cites W1536923222 @default.
- W2122140352 cites W1542868541 @default.
- W2122140352 cites W1552396034 @default.
- W2122140352 cites W1561321452 @default.
- W2122140352 cites W1581414347 @default.
- W2122140352 cites W1588950136 @default.
- W2122140352 cites W1596781203 @default.
- W2122140352 cites W1751732659 @default.
- W2122140352 cites W1775749144 @default.
- W2122140352 cites W1819220629 @default.
- W2122140352 cites W1852941485 @default.
- W2122140352 cites W1951469402 @default.
- W2122140352 cites W1965975528 @default.
- W2122140352 cites W1966029801 @default.
- W2122140352 cites W1966999658 @default.
- W2122140352 cites W1969842031 @default.
- W2122140352 cites W1979492674 @default.
- W2122140352 cites W1982179018 @default.
- W2122140352 cites W1995721499 @default.
- W2122140352 cites W1996143925 @default.
- W2122140352 cites W1997879608 @default.
- W2122140352 cites W1999874510 @default.
- W2122140352 cites W2002314190 @default.
- W2122140352 cites W2030948649 @default.
- W2122140352 cites W2032177410 @default.
- W2122140352 cites W2032681327 @default.
- W2122140352 cites W2047246063 @default.
- W2122140352 cites W2049669891 @default.
- W2122140352 cites W2050331554 @default.
- W2122140352 cites W2051143012 @default.
- W2122140352 cites W2054333193 @default.
- W2122140352 cites W2058529446 @default.
- W2122140352 cites W2066583195 @default.
- W2122140352 cites W2072293076 @default.
- W2122140352 cites W2087321974 @default.
- W2122140352 cites W2088524561 @default.
- W2122140352 cites W2100837269 @default.
- W2122140352 cites W2127472450 @default.
- W2122140352 cites W2132557826 @default.
- W2122140352 cites W2159614255 @default.
- W2122140352 cites W2164646340 @default.
- W2122140352 cites W2281644538 @default.
- W2122140352 cites W2282444764 @default.
- W2122140352 cites W2340774400 @default.
- W2122140352 doi "https://doi.org/10.1093/carcin/17.4.821" @default.
- W2122140352 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/8625497" @default.
- W2122140352 hasPublicationYear "1996" @default.
- W2122140352 type Work @default.
- W2122140352 sameAs 2122140352 @default.
- W2122140352 citedByCount "116" @default.
- W2122140352 countsByYear W21221403522012 @default.
- W2122140352 countsByYear W21221403522013 @default.
- W2122140352 countsByYear W21221403522014 @default.
- W2122140352 countsByYear W21221403522015 @default.
- W2122140352 countsByYear W21221403522016 @default.
- W2122140352 countsByYear W21221403522017 @default.
- W2122140352 countsByYear W21221403522018 @default.
- W2122140352 countsByYear W21221403522019 @default.
- W2122140352 countsByYear W21221403522020 @default.
- W2122140352 countsByYear W21221403522021 @default.
- W2122140352 countsByYear W21221403522022 @default.
- W2122140352 countsByYear W21221403522023 @default.
- W2122140352 crossrefType "journal-article" @default.
- W2122140352 hasAuthorship W2122140352A5025474639 @default.
- W2122140352 hasAuthorship W2122140352A5032442574 @default.
- W2122140352 hasAuthorship W2122140352A5054514835 @default.
- W2122140352 hasAuthorship W2122140352A5080522467 @default.
- W2122140352 hasAuthorship W2122140352A5081334626 @default.
- W2122140352 hasAuthorship W2122140352A5091841050 @default.
- W2122140352 hasBestOaLocation W21221403521 @default.
- W2122140352 hasConcept C119795356 @default.
- W2122140352 hasConcept C126322002 @default.
- W2122140352 hasConcept C134018914 @default.
- W2122140352 hasConcept C134651460 @default.
- W2122140352 hasConcept C140027455 @default.
- W2122140352 hasConcept C181199279 @default.
- W2122140352 hasConcept C185592680 @default.
- W2122140352 hasConcept C25747580 @default.
- W2122140352 hasConcept C2777477808 @default.
- W2122140352 hasConcept C526171541 @default.
- W2122140352 hasConcept C538909803 @default.
- W2122140352 hasConcept C55493867 @default.
- W2122140352 hasConcept C71924100 @default.