Matches in SemOpenAlex for { <https://semopenalex.org/work/W2122158722> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2122158722 endingPage "252" @default.
- W2122158722 startingPage "239" @default.
- W2122158722 abstract "Biological ReviewsVolume 26, Issue 3 p. 239-252 THE ROLE OF ZINC IN PLANT METABOLISM C. G. C. CHESTERS, C. G. C. CHESTERS Department of Botany, University of NottinghamSearch for more papers by this authorG. N. ROLINSON, G. N. ROLINSON Department of Botany, University of Nottingham *Boots Pure Drug Co. Ltd., Research Department, Bacteriological Division, Oakfields Road, West Bridgford, Nottingham.Search for more papers by this author C. G. C. CHESTERS, C. G. C. CHESTERS Department of Botany, University of NottinghamSearch for more papers by this authorG. N. ROLINSON, G. N. ROLINSON Department of Botany, University of Nottingham *Boots Pure Drug Co. Ltd., Research Department, Bacteriological Division, Oakfields Road, West Bridgford, Nottingham.Search for more papers by this author First published: August 1951 https://doi.org/10.1111/j.1469-185X.1951.tb01354.xCitations: 17 AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL REFERENCES Alben, A. O., Cole, J. R. & LEWIS, R. D. (1932). New developments in treating pecan rosette with chemicals. Phytopathology, 22, 979– 80. Barnette, R. M. & Warner, J. D. (1935). A response of chlorotic corn plants to the application of zinc sulfate to the soil. Soil Sci. 39, 145– 56. Bean, R. S. (1942). The effect of zinc on nitrogen metabolism and on certain oxidizing enzymes in leaves of the tomato plant. Ph.D. Thesis. University of California. Cited from Hoagland (1944). Berthand, G. & Bhattacherjee, R. C. (1935). Recherches sur ľ action combinee du zinc et des vitamines dans ľ alimentation des animaux. Ann. Inst. Pasteur, 55, 265– 72. Bortels, H. (1927). Über die Bedeutung von Eisen, Zink, und Kupfer für Microorganismen. Biochem. Z. 183, 301– 58. Boysen-Jensen, P. (1932). Über die Bildung und biologische Bedeutung des Wachstumsregulators bei Aspergillus niger. Biochem. Z. 350, 270– 80. Bradfield, J. R. G. (1947). Plant carbonic anhydrase. Nature, Lond., 159, 467– 8. Butkewitsch, W. & Orlow, F. W. G. (1922). Zur Frage nach dem ekonomischen Koeffizienten bei Aspergillus niger. Biochem. Z. 133, 556– 65. Chandler, W. H. (1937). Zinc as a nutrient for plants. Bot. Gaz. 98, 625– 46. Chandler, W. H., Hoagland, D. R. & Hibbard, P. L. (1932). Little-leaf or rosette in fruit trees. I. Proc. Amer. Soc. hort. Set. 28, 556– 60. Chandler, W. H., Hoagland, D. R. & Hibbard, P. L. (1933). Little-leaf or rosette in fruit trees. II. Proc. Amer. Soc. hort. Sci. 29, 255– 63. Chandler, W. H., Hoagland, D. R. & Hibbard, P. L. (1934). Little-leaf or rosette in fruit trees. III. Proc. Amer. Soc. hort. Sci. 30, 70– 86. Chapman, H. D., Vanselow, A. P. & Liebig, G. F. (1937). The production of citrus mottle-leaf in controlled nutrient cultures. J. agric. Res. 55, 365– 79. Chesters, C G. C. & Rolinson, G. N. (1950a). Role of zinc in metabolism. Nature, Lond., 165, 851– 2. Chesters, C. G. C. & Rolinson, G. N. (1950b). Aspects of the trace element nutrition of Streptomyces griseus. J. gen. Microbiol. 4, i. Coulthard, C. E., Michaelis, R., Short, W. F., Sykes, G., Skrimshire, G. E. H., Standfast, A. F. B., Birkinshaw, H. J. & Raistrick, H. (1945). Notatin: an antibacterial glucose-aerodehydrogenase from Penicillium notatum Westling and Penicillium resticulosum sp. nov. Biochem. J. 39, 24– 36. Davenport, H. W. (1940). Gastric carbonic anhydrase in dogs. Amer. J. Physiol. 128, 725– 28. Demaree, J. B., Fowler, E. D. & Crane, H. L. (1933). Report of progress on experiments to control pecan rosette. Nation. Pecan Assoc. Bull. Proc. Ann. Conv. 32, 90– 9. ( Biol. Abstr. 9, 1225, 1935). Eggleton, W. G. E. (1939). The zinc content of epidermal structures in beriberi. Biochem. J. 33, 403– 6. Eggleton, W. G. E. (1940). The zinc and copper content of blood in beriberi, in conditions associated with protein deficiency and in diabetes mellitus. Chin. J. Physiol. 15, 33– 44. (Biol. Abstr. 14, 14.753. 1940.). Eltinge, E. T. & Reed, H. S. (1940). The effect of zinc deficiency upon the root of Lycopersicum esculentum. Amer. J. Bot. 27, 331– 5. Feeney, R. E., Lightbody, H. D. & Garibaldi, J. A. (1947). Zinc as an essential element for growth and subtilin formation by Bacillus subtilis. Arch. Biochem. 15, 13– 17. Finch, A. H. & Kinnison, A. F. (1933). Pecan rosette: soil, chemical and physiological studies. Tech. Bull. Ariz. Agric. Exp. Sta. no. 47, 407– 42. Cited from Stiles (1946). Foster, J. W. (1939). The heavy metal nutrition of fungi. Bot. Rev. 5, 207– 39. Foster, J. W. & Waksman, S. A. (1939). The specific effect of zinc and other heavy metals on the growth and nutrition of Rhizopus. J. Bact. 37, 599– 617. Foster, J. W., Woodruff, H. B. & McDaniel, L. E. (1943). Microbiological aspects of penicillin; production of penicillin in surface cultures of Penicillium notatum. J. Bact. 46, 421– 33. Gollmick, F. (1936). Der Einfluss von Zink, Eisen und Kupfer und deren Kombination auf dem Wachstum von Aspergillus niger. Zbl. Bakt. (2. Abt.), 93, 421– 42. Haas, E. R. C. (1937). Zinc relation in mottle-leaf of Citrus. Bot. Gaz. 98, 65– 86. Hoagland, D. R. (1944). Lectures on the inorganic nutrition of plants. Chronica Botanica Co. Waltham . Hove, E., Elvehjem, C. A. & Hart, E. B. (1937). The physiology of zinc in the nutrition of the rat Amer. J. Physiol. 119, 768– 75. Javillier, M. (1912). Sur la substitution au zinc de divers elements chimiques pour la culture du Sterigmatocystis nigra. C. R. Acad. Sci., Paris, 155, 1551– 2. Johnston, J. C. (1933). Zinc sulfate promising new treatment for mottle-leaf. Calif. Citrogr. 18 107, 116– 18. Cited from Stiles (1946). Karow, E. O. & Waksman, S. A. (1947). Production of citric acid in submerged culture. Industr. Engng Chem. 39, 821– 5. Kauffmann-Cosla, O., Gheorghiu, P. & Brüll, R. (1939). Biological action of zinc. Bull. Soc. Chim. biol., Paris, 21, 422– 8. ( Chem. Abstr. 33, 5432, 1939.). Keilin, D. & Mann, T. (1940). Carbonic anhydrase. Purification and nature of the enzyme. Biochem. J. 34, 1163– 76. Kessell, S. L. & Stoate, T. N. (1936). Plant nutrients and pine growth. Aust. For. 1, 4– 13. Cited from Stiles (1946). Kessell, S. L. & Stoate, T. N. (1938). Fine nutrition. Bull. W. Aust. For. Dep. no. 50. Cited from Stiles (1946). Lockwood, L. B., Ward, G. E. & May, O. E. (1936). The physiology of Rhizopus oryzae. J. agric. Res. 53, 849– 57. Máze, P. (1914). Influences respectives des éléments de la solution minérale sur le developpement du maïs. Ann. Inst. Pasteur, 28, 1– 48. McHargue, J. S. & Calfee, R. K. (1931). Effect of manganese, copper and zinc on the growth and metabolism of Aspergillus flavus and Rhizopus nigricans. Bot. Gaz. 91, 183– 93. Molliard, M. (1929). Caractères physiologiques présentéd pour le Sterigmatocystis nigra en inanition de zinc et de fer. C. R. Acad. Sci., Paris, 189, 417– 20. Mowry, H. & Camp, A. F. (1934). A preliminary report on zinc sulfate as a corrective for bronzing of Tung trees. Bull. Univ. Florida Agric. Exp. Sta. p. 273. Cited from Chandler (1937). Niethammer, A. (1938). Wachstumversuche mit mikroskopischen Bodenpilze. Arch. Mikrobiol. 9, 23– 30. Parker, E. R. (1937). Effect of zinc applications on the crop of grapefruit trees affected with mottle-leaf. Hilgardia, 11, 35– 53. Perlman, D., Dorrell, W. A. & Johnson, M. J. (1946). Effect of metallic ions on the production of citric acid by Aspergillus niger. Arch. Biochem. 11, 131– 43. Perquin, L. H. C. (1938). Bijdrage tot de kennis der oxydative dissimilatie von Aspergillus niger. Dissertation, Delft. Cited from Foster (1939). Porges, N. (1932). Chemical composition of Aspergillus niger as modified by zinc sulphate. Bot. Gaz. 94, 197– 207. Raulin, J. (1869). Études chimiques sur la végétation. Ann. Sci. nat. Bot., 5 Ser., 11, 93– 299. Reed, H. S. (1938). Cytology of leaves affected with mottle-leaf. Amer. J. Bot. 25, 174– 86. Reed, H. S. (1939). The relation of copper and zinc salts to leaf structure. Amer. J. Bot. 26, 29– 33. Reed, H. S. (1941). Effects of zinc deficiency on cells of vegetative buds. Amer. J. Bot. 28, 10– 17. Reed, H. S. (1942). The relation of zinc to seed production. J. Agric. Res. 64, 635– 44. Reed, H. S. (1946). Effects of zinc deficiency on phosphate metabolism of the tomato plant. Amer. J. Bot. 33, 778– 84. Reed, H. S. & Beck, J. V. (1939). The effect of zinc on the growth process. Growth, 3, 1– 7. Cited from Reed (1942). Reed, H. S. & Dufrenoy, J. (1935). The effects of zinc and iron salt on the cell structure of mottled orange leaves. Hilgardia, 9, 113– 37. Reed, H. S. & Dufrenoy, J. (1942). Catechol aggregates in the vacuoles of cells of zinc-deficient plants. Amer. J. Bot. 29, 544– 51. Roberg, M. (1928). Über die Wirkung von Eisen, Zink und Kupfersalzen auf Aspergillen. Zbl. Bakt. (2. Abt.), 74, 333– 71. Roberg, M. (1931). Weitere Untersuchungen iiber die Bedeutung des Zinks für Aspergillus niger. Zbl. Bakt. (2. Abt.), 84, 196– 230. Sheline, C. E., Chaikoff, I. L., Jones, H. B. & Montgomery, M. L. (1943). Studies on the metabolism of zinc with the aid of its radioactive isotope. J. biol. Chem. 147, 408– 14. Shu, P. & Johnson, M. J. (1948). The interdependence of medium constituents in citric acid production by submerged fermentation. J. Bad. 56, 577– 85. Skoog, F. (1940). Relationships between zinc and auxin in the growth of higher plants. Amer. J. Bot. 27 939– 51. Skoog, F., Broyer, T. C. & Grossenbacher, K. A. (1938). Effects of auxin on rates, periodicity and osmotic relations in exudation. Amer. J. Bot. 25, 749– 59. Snyder, E. & Harmon, F. N. (1942). Some effects of zinc sulphate on the Alexandria grape. Proc Amer. Soc. hort. Sci. 40, 325– 7. Sommer, A. L. (1928). Further evidences of the essential nature of zinc for the growth of higher green plants. Plant Physiol. 3, 217– 21. Steinberg, R. A. (1919). A study of some factors in the chemical stimulation of the growth of Aspergillus niger. Amer. J. Bot. 6, 330– 72. Steinberg, R. A. (1935). Nutrient-solution purification for the removal of heavy metals in deficiency investigations with Aspergillus niger. J. agric. Res. 51, 413– 24. Stiles, W. (1946). Trace elements in plants and animals. Cambridge University Press. Stirn, F. E., Elvehjem, C. A. & Hart, F. B. (1935). The indispensability of zinc in nutrition of the rat. J. biol. Chem. 109, 347– 59. Tsui, C. (1948a). The role of zinc in auxin synthesis in the tomato plant. Amer. J. Bot. 35, 172. Tsui, C. (1948b). The effect of zinc on water relation and osmotic pressure of the tomato plant. Amer. J. Bot. 35, 309– 11. Tsui, C. (1949). Zinc and plant respiration. Nature, Lond., 164, 970. van Overbeek, J. (1944). Auxin, water uptake and osmotic pressure in potato tissue. Amer. J. Bot. 31, 265– 9. Waksman, S. A. & Foster, J. W. (1938). Respiration and lactic acid production by a fungus of the genus Rhizopus. J. agric. Res. 57, 873– 99. Warburg, O. & Christian, W. (1943). Isolierung und Kristillisation des Garungsferments Zymohexase. Biochem. Z. 314, 149– 76. Wassiljew, G. M. (1935a). Über die Einwirkung von Zink auf dem Stoffwechsel von Aspergillus niger. Arch. Mikrobiol. 6, 250– 75. Wassiljew, G. M. (1935b). Über biochemische Characterisierung einiger Stämme von Aspergillus niger hinsichtlich ihres Säurebildungsvermögens. Biochem. Z. 278, 226– 34. Went, W. F. & Thimann, K. V. (1937). Phytohormones. New York : Macmillan Co. Wildman, S. G., Ferri, M. G. & Bonner, J. (1947). The enzymatic conversion of tryptophan to auxin by spinach leaves. Arch. Biochem. 13, 131– 44. Yudkin, W. H. & Fruton, J. S. (1947). The activation of dehydropeptidase by zinc. J. biol. Chem. 170, 421– 2. Citing Literature Volume26, Issue3August 1951Pages 239-252 ReferencesRelatedInformation" @default.
- W2122158722 created "2016-06-24" @default.
- W2122158722 creator A5031067110 @default.
- W2122158722 creator A5056088307 @default.
- W2122158722 date "1951-08-01" @default.
- W2122158722 modified "2023-09-24" @default.
- W2122158722 title "THE ROLE OF ZINC IN PLANT METABOLISM" @default.
- W2122158722 cites W120441532 @default.
- W2122158722 cites W1510123682 @default.
- W2122158722 cites W1553480381 @default.
- W2122158722 cites W1879059432 @default.
- W2122158722 cites W1964568978 @default.
- W2122158722 cites W1975171636 @default.
- W2122158722 cites W1983041373 @default.
- W2122158722 cites W2017854027 @default.
- W2122158722 cites W2025094052 @default.
- W2122158722 cites W2029836933 @default.
- W2122158722 cites W2041998720 @default.
- W2122158722 cites W2045943700 @default.
- W2122158722 cites W2051268115 @default.
- W2122158722 cites W2051453627 @default.
- W2122158722 cites W2090576097 @default.
- W2122158722 cites W2090884407 @default.
- W2122158722 cites W2094852987 @default.
- W2122158722 cites W2235046188 @default.
- W2122158722 cites W2337632539 @default.
- W2122158722 cites W2410837521 @default.
- W2122158722 cites W2502937204 @default.
- W2122158722 cites W2546484946 @default.
- W2122158722 cites W2748188799 @default.
- W2122158722 cites W2778876202 @default.
- W2122158722 cites W4229686242 @default.
- W2122158722 cites W4232686891 @default.
- W2122158722 cites W4233594967 @default.
- W2122158722 cites W4233972573 @default.
- W2122158722 cites W4234474527 @default.
- W2122158722 cites W4241131659 @default.
- W2122158722 cites W4244583539 @default.
- W2122158722 cites W4246011915 @default.
- W2122158722 cites W4252776840 @default.
- W2122158722 cites W4253997772 @default.
- W2122158722 cites W4254058636 @default.
- W2122158722 cites W4255794749 @default.
- W2122158722 cites W4256544243 @default.
- W2122158722 cites W963764373 @default.
- W2122158722 doi "https://doi.org/10.1111/j.1469-185x.1951.tb01354.x" @default.
- W2122158722 hasPublicationYear "1951" @default.
- W2122158722 type Work @default.
- W2122158722 sameAs 2122158722 @default.
- W2122158722 citedByCount "23" @default.
- W2122158722 countsByYear W21221587222018 @default.
- W2122158722 countsByYear W21221587222019 @default.
- W2122158722 countsByYear W21221587222021 @default.
- W2122158722 countsByYear W21221587222023 @default.
- W2122158722 crossrefType "journal-article" @default.
- W2122158722 hasAuthorship W2122158722A5031067110 @default.
- W2122158722 hasAuthorship W2122158722A5056088307 @default.
- W2122158722 hasConcept C104317684 @default.
- W2122158722 hasConcept C178790620 @default.
- W2122158722 hasConcept C185592680 @default.
- W2122158722 hasConcept C2992992772 @default.
- W2122158722 hasConcept C535196362 @default.
- W2122158722 hasConcept C55493867 @default.
- W2122158722 hasConcept C62231903 @default.
- W2122158722 hasConcept C67705224 @default.
- W2122158722 hasConcept C86803240 @default.
- W2122158722 hasConceptScore W2122158722C104317684 @default.
- W2122158722 hasConceptScore W2122158722C178790620 @default.
- W2122158722 hasConceptScore W2122158722C185592680 @default.
- W2122158722 hasConceptScore W2122158722C2992992772 @default.
- W2122158722 hasConceptScore W2122158722C535196362 @default.
- W2122158722 hasConceptScore W2122158722C55493867 @default.
- W2122158722 hasConceptScore W2122158722C62231903 @default.
- W2122158722 hasConceptScore W2122158722C67705224 @default.
- W2122158722 hasConceptScore W2122158722C86803240 @default.
- W2122158722 hasIssue "3" @default.
- W2122158722 hasLocation W21221587221 @default.
- W2122158722 hasOpenAccess W2122158722 @default.
- W2122158722 hasPrimaryLocation W21221587221 @default.
- W2122158722 hasRelatedWork W2287134786 @default.
- W2122158722 hasRelatedWork W2327433255 @default.
- W2122158722 hasRelatedWork W2399973061 @default.
- W2122158722 hasRelatedWork W2406591841 @default.
- W2122158722 hasRelatedWork W2412322076 @default.
- W2122158722 hasRelatedWork W2952763657 @default.
- W2122158722 hasRelatedWork W2952897012 @default.
- W2122158722 hasRelatedWork W3014730431 @default.
- W2122158722 hasRelatedWork W745382877 @default.
- W2122158722 hasRelatedWork W91816699 @default.
- W2122158722 hasVolume "26" @default.
- W2122158722 isParatext "false" @default.
- W2122158722 isRetracted "false" @default.
- W2122158722 magId "2122158722" @default.
- W2122158722 workType "article" @default.