Matches in SemOpenAlex for { <https://semopenalex.org/work/W2122164055> ?p ?o ?g. }
- W2122164055 endingPage "3844" @default.
- W2122164055 startingPage "3844" @default.
- W2122164055 abstract "We created the first nanobattery inside a transmission electron microscope (TEM), allowing for real time and atomic scale observations of battery charging and discharging processes. Two types of nanobattery cells, one based on room temperature ionic liquid electrolytes (ILEs) and the other based on all solid components, were created. The former consists of a single nanowire anode, an ILE and a bulk LiCoO2 cathode; the latter uses Li2O as a solid electrolyte and metal Li as the anode. Some of the important latest results obtained by using the nanobattery setup are summarized here: (1) upon charging SnO2 nanowires in an ILE cell with one end of the nanowire contacting the electrolyte, a reaction front propagates progressively along the nanowire, causing the nanowire to swell, elongate, and spiral. The reaction front is a “Medusa zone” containing a high density of mobile dislocations, which continuously nucleate at the moving front and absorbed from behind. This dislocation cloud indicates large in-plane misfit stresses and is a structural precursor to electrochemically driven solid-state amorphization. When the nanowire is immersed in the electrolyte (in a flooding geometry), a multiple-strip-multiple-reaction-front lithiation mechanism operates. (2) Upon charging <112>-oriented Si nanowires, the nanowires swell rather than elongate. We found unexpectedly the highly anisotropic volume expansion in lithiated Si nanowires, resulting in a surprising dumbbell-shaped cross-section, which developed due to plastic flow and necking instability. Driven by progressive charging, the stress concentration at the neck region led to cracking and eventually fracture of the single nanowire into sub-wires. Moreover, the fully lithiated phase was found to be crystalline Li15Si4, rather than the widely believed Li22Si5 phase, indicating the maximum capacity of Si being 3579 mA h g−1 at room temperature. (3) Carbon coating not only increases rate performance but also alters the lithiation induced strain of SnO2 nanowires. The SnO2 nanowires coated with carbon can be charged about 10 times faster than the non-coated ones. Intriguingly, the radial expansion of the coated nanowires was completely suppressed, resulting in enormously reduced tensile stress at the reaction front, as evidenced by the lack of formation of dislocations. (4) The lithiation process of individual Si nanoparticles was observed in real time in a TEM. A strong size dependent fracture behaviour was discovered, i.e., there exists a critical particle size with a diameter of ∼150 nm, below which the particles neither cracked nor fractured upon lithiation, above which the particles first formed cracks and then fractured due to lithiation induced huge volume expansion. For very large particles with size over 900 nm, electrochemical lithiation induced explosion of Si particles was observed. This strong size-dependent fracture behaviour is attributed to the competition between the stored mechanical energy and the crack propagation energy of the nanoparticles: smaller nanoparticles cannot store enough mechanical energy to drive crack propagation. These results indicate the strong material, size and crystallographic orientation dependent electrochemical behaviour of anode materials, highlighting the powerfulness of in situTEM electrochemistry, which provides not only deep understanding of the fundamental sciences of lithium ion batteries but also critical guidance in developing advanced lithium ion battery for electrical vehicle and backup power for fluctuation energy sources such as wind and solar energy." @default.
- W2122164055 created "2016-06-24" @default.
- W2122164055 creator A5021394641 @default.
- W2122164055 creator A5061948021 @default.
- W2122164055 date "2011-01-01" @default.
- W2122164055 modified "2023-10-14" @default.
- W2122164055 title "In situ TEM electrochemistry of anode materials in lithium ion batteries" @default.
- W2122164055 cites W1670172520 @default.
- W2122164055 cites W1842678339 @default.
- W2122164055 cites W1949231392 @default.
- W2122164055 cites W1970394651 @default.
- W2122164055 cites W1974018524 @default.
- W2122164055 cites W1974591393 @default.
- W2122164055 cites W1975385210 @default.
- W2122164055 cites W1975676357 @default.
- W2122164055 cites W1975678020 @default.
- W2122164055 cites W1979516228 @default.
- W2122164055 cites W1980338372 @default.
- W2122164055 cites W1980623606 @default.
- W2122164055 cites W1980635672 @default.
- W2122164055 cites W1985055242 @default.
- W2122164055 cites W1987553576 @default.
- W2122164055 cites W1987738718 @default.
- W2122164055 cites W1988921362 @default.
- W2122164055 cites W1997913942 @default.
- W2122164055 cites W1998701625 @default.
- W2122164055 cites W2000597976 @default.
- W2122164055 cites W2000695887 @default.
- W2122164055 cites W2000872686 @default.
- W2122164055 cites W2003373056 @default.
- W2122164055 cites W2003505625 @default.
- W2122164055 cites W2004222956 @default.
- W2122164055 cites W2004691335 @default.
- W2122164055 cites W2006647859 @default.
- W2122164055 cites W2007084362 @default.
- W2122164055 cites W2007930007 @default.
- W2122164055 cites W2008913297 @default.
- W2122164055 cites W2014512753 @default.
- W2122164055 cites W2015532007 @default.
- W2122164055 cites W2015937643 @default.
- W2122164055 cites W2016730434 @default.
- W2122164055 cites W2016839998 @default.
- W2122164055 cites W2018527842 @default.
- W2122164055 cites W2018657387 @default.
- W2122164055 cites W2018678486 @default.
- W2122164055 cites W2019474324 @default.
- W2122164055 cites W2021219814 @default.
- W2122164055 cites W2021575166 @default.
- W2122164055 cites W2023356290 @default.
- W2122164055 cites W2024565483 @default.
- W2122164055 cites W2025352236 @default.
- W2122164055 cites W2034134006 @default.
- W2122164055 cites W2035166133 @default.
- W2122164055 cites W2036069097 @default.
- W2122164055 cites W2036408855 @default.
- W2122164055 cites W2036522059 @default.
- W2122164055 cites W2037032124 @default.
- W2122164055 cites W2037099468 @default.
- W2122164055 cites W2043447799 @default.
- W2122164055 cites W2044428826 @default.
- W2122164055 cites W2047775723 @default.
- W2122164055 cites W2050091528 @default.
- W2122164055 cites W2050394534 @default.
- W2122164055 cites W2052208476 @default.
- W2122164055 cites W2053291683 @default.
- W2122164055 cites W2055302323 @default.
- W2122164055 cites W2057592065 @default.
- W2122164055 cites W2058304173 @default.
- W2122164055 cites W2060384381 @default.
- W2122164055 cites W2060710991 @default.
- W2122164055 cites W2062169476 @default.
- W2122164055 cites W2062517395 @default.
- W2122164055 cites W2062744893 @default.
- W2122164055 cites W2064079552 @default.
- W2122164055 cites W2064487613 @default.
- W2122164055 cites W2066534681 @default.
- W2122164055 cites W2067923533 @default.
- W2122164055 cites W2069170466 @default.
- W2122164055 cites W2071792132 @default.
- W2122164055 cites W2074884172 @default.
- W2122164055 cites W2076000388 @default.
- W2122164055 cites W2077868354 @default.
- W2122164055 cites W2077964190 @default.
- W2122164055 cites W2078651380 @default.
- W2122164055 cites W2080853943 @default.
- W2122164055 cites W2081891816 @default.
- W2122164055 cites W2084044292 @default.
- W2122164055 cites W2085226603 @default.
- W2122164055 cites W2085384469 @default.
- W2122164055 cites W2087442711 @default.
- W2122164055 cites W2087638294 @default.
- W2122164055 cites W2088710514 @default.
- W2122164055 cites W2088961939 @default.
- W2122164055 cites W2089623098 @default.
- W2122164055 cites W2090952364 @default.
- W2122164055 cites W2091483792 @default.
- W2122164055 cites W2094672714 @default.
- W2122164055 cites W2097535432 @default.