Matches in SemOpenAlex for { <https://semopenalex.org/work/W2122367764> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2122367764 abstract "We investigate the use of sparse principal components for representing hyperspectral imagery when performing feature selection. For conventional multispectral data with low dimensionality, dimension reduction can be achieved by using traditional feature selection techniques for producing a subset of features that provide the highest class separability, or by feature extraction techniques via linear transformation. When dealing with hyperspectral data, feature selection is a time consuming task, often requiring exhaustive search of all the feature subset combinations. Instead, feature extraction technique such as PCA is commonly used. Unfortunately, PCA usually involves non-zero linear combinations or 'loadings' of all of the data. Sparse principal components are the sets of sparse vectors spanning a low-dimensional space that explain most of the variance present in the data. Our experiments show that sparse principal components having low-dimensionality still characterize the variance in the data. Sparse data representations are generally desirable for hyperspectral images because sparse representations help in human understanding and in classification." @default.
- W2122367764 created "2016-06-24" @default.
- W2122367764 creator A5024044743 @default.
- W2122367764 creator A5039219305 @default.
- W2122367764 creator A5053635416 @default.
- W2122367764 creator A5072128915 @default.
- W2122367764 date "2008-01-01" @default.
- W2122367764 modified "2023-10-16" @default.
- W2122367764 title "Sparse Representations for Hyperspectral Data Classification" @default.
- W2122367764 cites W1532610010 @default.
- W2122367764 cites W1947741949 @default.
- W2122367764 cites W1967073510 @default.
- W2122367764 cites W1975900269 @default.
- W2122367764 cites W1976381494 @default.
- W2122367764 cites W1976990135 @default.
- W2122367764 cites W2000895242 @default.
- W2122367764 cites W2113600901 @default.
- W2122367764 cites W2135046866 @default.
- W2122367764 cites W2141261622 @default.
- W2122367764 cites W2144188273 @default.
- W2122367764 cites W2159509001 @default.
- W2122367764 cites W2171270653 @default.
- W2122367764 cites W2615253071 @default.
- W2122367764 cites W2912522929 @default.
- W2122367764 cites W2952736586 @default.
- W2122367764 cites W3120740533 @default.
- W2122367764 cites W628438000 @default.
- W2122367764 doi "https://doi.org/10.1109/igarss.2008.4779058" @default.
- W2122367764 hasPublicationYear "2008" @default.
- W2122367764 type Work @default.
- W2122367764 sameAs 2122367764 @default.
- W2122367764 citedByCount "8" @default.
- W2122367764 countsByYear W21223677642014 @default.
- W2122367764 crossrefType "proceedings-article" @default.
- W2122367764 hasAuthorship W2122367764A5024044743 @default.
- W2122367764 hasAuthorship W2122367764A5039219305 @default.
- W2122367764 hasAuthorship W2122367764A5053635416 @default.
- W2122367764 hasAuthorship W2122367764A5072128915 @default.
- W2122367764 hasConcept C111030470 @default.
- W2122367764 hasConcept C124066611 @default.
- W2122367764 hasConcept C138885662 @default.
- W2122367764 hasConcept C148483581 @default.
- W2122367764 hasConcept C153180895 @default.
- W2122367764 hasConcept C154945302 @default.
- W2122367764 hasConcept C159078339 @default.
- W2122367764 hasConcept C173163844 @default.
- W2122367764 hasConcept C24252448 @default.
- W2122367764 hasConcept C27438332 @default.
- W2122367764 hasConcept C2776401178 @default.
- W2122367764 hasConcept C41008148 @default.
- W2122367764 hasConcept C41895202 @default.
- W2122367764 hasConcept C52622490 @default.
- W2122367764 hasConcept C70518039 @default.
- W2122367764 hasConcept C83665646 @default.
- W2122367764 hasConceptScore W2122367764C111030470 @default.
- W2122367764 hasConceptScore W2122367764C124066611 @default.
- W2122367764 hasConceptScore W2122367764C138885662 @default.
- W2122367764 hasConceptScore W2122367764C148483581 @default.
- W2122367764 hasConceptScore W2122367764C153180895 @default.
- W2122367764 hasConceptScore W2122367764C154945302 @default.
- W2122367764 hasConceptScore W2122367764C159078339 @default.
- W2122367764 hasConceptScore W2122367764C173163844 @default.
- W2122367764 hasConceptScore W2122367764C24252448 @default.
- W2122367764 hasConceptScore W2122367764C27438332 @default.
- W2122367764 hasConceptScore W2122367764C2776401178 @default.
- W2122367764 hasConceptScore W2122367764C41008148 @default.
- W2122367764 hasConceptScore W2122367764C41895202 @default.
- W2122367764 hasConceptScore W2122367764C52622490 @default.
- W2122367764 hasConceptScore W2122367764C70518039 @default.
- W2122367764 hasConceptScore W2122367764C83665646 @default.
- W2122367764 hasLocation W21223677641 @default.
- W2122367764 hasOpenAccess W2122367764 @default.
- W2122367764 hasPrimaryLocation W21223677641 @default.
- W2122367764 hasRelatedWork W2028628118 @default.
- W2122367764 hasRelatedWork W2031007444 @default.
- W2122367764 hasRelatedWork W2082083895 @default.
- W2122367764 hasRelatedWork W2736348740 @default.
- W2122367764 hasRelatedWork W2759110340 @default.
- W2122367764 hasRelatedWork W2783789044 @default.
- W2122367764 hasRelatedWork W2891352623 @default.
- W2122367764 hasRelatedWork W2972973180 @default.
- W2122367764 hasRelatedWork W3211035526 @default.
- W2122367764 hasRelatedWork W4291701050 @default.
- W2122367764 isParatext "false" @default.
- W2122367764 isRetracted "false" @default.
- W2122367764 magId "2122367764" @default.
- W2122367764 workType "article" @default.