Matches in SemOpenAlex for { <https://semopenalex.org/work/W2122496001> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2122496001 abstract "Natural Language Processing has emerged as an active field of research in the machine learning community. Several methods based on statistical information have been proposed. However, with the linguistic complexity of the texts, semantic-based approaches have been investigated. In this paper, we propose a Semantic Kernel for semi- structured biomedical documents. The semantic meanings of words are extracted using the UMLS framework. The kernel, with a SVM classifier, has been applied to a text categorization task on a medical corpus of free text documents. The results have shown that the Semantic Kernel outperforms the Linear Kernel and the Naive Bayes classifier. Moreover, this kernel was ranked in the top ten of the best algorithms among 44 classification methods at the 2007 CMC Medical NLP International Challenge." @default.
- W2122496001 created "2016-06-24" @default.
- W2122496001 creator A5019338743 @default.
- W2122496001 creator A5025742669 @default.
- W2122496001 creator A5063862691 @default.
- W2122496001 date "2007-10-01" @default.
- W2122496001 modified "2023-10-15" @default.
- W2122496001 title "A Semantic Kernel for Semi-structured DocumentS" @default.
- W2122496001 cites W1510073064 @default.
- W2122496001 cites W1576213419 @default.
- W2122496001 cites W1647729745 @default.
- W2122496001 cites W1787730017 @default.
- W2122496001 cites W17967270 @default.
- W2122496001 cites W1870686808 @default.
- W2122496001 cites W1979495886 @default.
- W2122496001 cites W2084377579 @default.
- W2122496001 cites W2096152098 @default.
- W2122496001 cites W2096616587 @default.
- W2122496001 cites W2109710679 @default.
- W2122496001 cites W2117805756 @default.
- W2122496001 cites W2130913205 @default.
- W2122496001 cites W2147152072 @default.
- W2122496001 cites W2149684865 @default.
- W2122496001 cites W2156909104 @default.
- W2122496001 cites W2534712034 @default.
- W2122496001 doi "https://doi.org/10.1109/icdm.2007.23" @default.
- W2122496001 hasPublicationYear "2007" @default.
- W2122496001 type Work @default.
- W2122496001 sameAs 2122496001 @default.
- W2122496001 citedByCount "1" @default.
- W2122496001 countsByYear W21224960012020 @default.
- W2122496001 crossrefType "proceedings-article" @default.
- W2122496001 hasAuthorship W2122496001A5019338743 @default.
- W2122496001 hasAuthorship W2122496001A5025742669 @default.
- W2122496001 hasAuthorship W2122496001A5063862691 @default.
- W2122496001 hasConcept C114614502 @default.
- W2122496001 hasConcept C119857082 @default.
- W2122496001 hasConcept C122280245 @default.
- W2122496001 hasConcept C12267149 @default.
- W2122496001 hasConcept C140417398 @default.
- W2122496001 hasConcept C154945302 @default.
- W2122496001 hasConcept C204321447 @default.
- W2122496001 hasConcept C23123220 @default.
- W2122496001 hasConcept C33923547 @default.
- W2122496001 hasConcept C41008148 @default.
- W2122496001 hasConcept C52001869 @default.
- W2122496001 hasConcept C69505689 @default.
- W2122496001 hasConcept C74193536 @default.
- W2122496001 hasConcept C75866337 @default.
- W2122496001 hasConcept C95623464 @default.
- W2122496001 hasConceptScore W2122496001C114614502 @default.
- W2122496001 hasConceptScore W2122496001C119857082 @default.
- W2122496001 hasConceptScore W2122496001C122280245 @default.
- W2122496001 hasConceptScore W2122496001C12267149 @default.
- W2122496001 hasConceptScore W2122496001C140417398 @default.
- W2122496001 hasConceptScore W2122496001C154945302 @default.
- W2122496001 hasConceptScore W2122496001C204321447 @default.
- W2122496001 hasConceptScore W2122496001C23123220 @default.
- W2122496001 hasConceptScore W2122496001C33923547 @default.
- W2122496001 hasConceptScore W2122496001C41008148 @default.
- W2122496001 hasConceptScore W2122496001C52001869 @default.
- W2122496001 hasConceptScore W2122496001C69505689 @default.
- W2122496001 hasConceptScore W2122496001C74193536 @default.
- W2122496001 hasConceptScore W2122496001C75866337 @default.
- W2122496001 hasConceptScore W2122496001C95623464 @default.
- W2122496001 hasLocation W21224960011 @default.
- W2122496001 hasLocation W21224960012 @default.
- W2122496001 hasLocation W21224960013 @default.
- W2122496001 hasOpenAccess W2122496001 @default.
- W2122496001 hasPrimaryLocation W21224960011 @default.
- W2122496001 hasRelatedWork W1535136526 @default.
- W2122496001 hasRelatedWork W1590832708 @default.
- W2122496001 hasRelatedWork W1969447452 @default.
- W2122496001 hasRelatedWork W1983263273 @default.
- W2122496001 hasRelatedWork W2071590642 @default.
- W2122496001 hasRelatedWork W2558026684 @default.
- W2122496001 hasRelatedWork W3013206934 @default.
- W2122496001 hasRelatedWork W3099811568 @default.
- W2122496001 hasRelatedWork W3123056048 @default.
- W2122496001 hasRelatedWork W4294351650 @default.
- W2122496001 isParatext "false" @default.
- W2122496001 isRetracted "false" @default.
- W2122496001 magId "2122496001" @default.
- W2122496001 workType "article" @default.