Matches in SemOpenAlex for { <https://semopenalex.org/work/W2122693242> ?p ?o ?g. }
- W2122693242 endingPage "154" @default.
- W2122693242 startingPage "145" @default.
- W2122693242 abstract "The pervasive sensing technologies found in smart environments offer unprecedented opportunities for monitoring and assisting the individuals who live and work in these spaces. As aspect of daily life that is often overlooked in maintaining a healthy lifestyle is the air quality of the environment. In this paper we investigate the use of machine learning technologies to predict CO(2) levels as an indicator of air quality in smart environments. We introduce techniques for collecting and analyzing sensor information in smart environments and analyze the correlation between resident activities and air quality levels. The effectiveness of our techniques is evaluated using three physical smart environment testbeds." @default.
- W2122693242 created "2016-06-24" @default.
- W2122693242 creator A5013191819 @default.
- W2122693242 creator A5024533689 @default.
- W2122693242 creator A5048183050 @default.
- W2122693242 creator A5081585029 @default.
- W2122693242 date "2010-01-01" @default.
- W2122693242 modified "2023-10-05" @default.
- W2122693242 title "Predicting air quality in smart environments" @default.
- W2122693242 cites W1481951316 @default.
- W2122693242 cites W1497385253 @default.
- W2122693242 cites W1527943496 @default.
- W2122693242 cites W1570448133 @default.
- W2122693242 cites W1585610923 @default.
- W2122693242 cites W1989804777 @default.
- W2122693242 cites W1991133427 @default.
- W2122693242 cites W1992665345 @default.
- W2122693242 cites W2002673464 @default.
- W2122693242 cites W2003637680 @default.
- W2122693242 cites W2004099281 @default.
- W2122693242 cites W2020648835 @default.
- W2122693242 cites W2045838233 @default.
- W2122693242 cites W2050836750 @default.
- W2122693242 cites W2075351671 @default.
- W2122693242 cites W2097403258 @default.
- W2122693242 cites W2108753912 @default.
- W2122693242 cites W2121269968 @default.
- W2122693242 cites W2122929515 @default.
- W2122693242 cites W2127495420 @default.
- W2122693242 cites W2129392535 @default.
- W2122693242 cites W2129897528 @default.
- W2122693242 cites W2138460198 @default.
- W2122693242 cites W2153536173 @default.
- W2122693242 cites W2159613676 @default.
- W2122693242 cites W2159656992 @default.
- W2122693242 cites W2966207845 @default.
- W2122693242 cites W88764598 @default.
- W2122693242 doi "https://doi.org/10.3233/ais-2010-0061" @default.
- W2122693242 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3100555" @default.
- W2122693242 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21617739" @default.
- W2122693242 hasPublicationYear "2010" @default.
- W2122693242 type Work @default.
- W2122693242 sameAs 2122693242 @default.
- W2122693242 citedByCount "38" @default.
- W2122693242 countsByYear W21226932422012 @default.
- W2122693242 countsByYear W21226932422013 @default.
- W2122693242 countsByYear W21226932422014 @default.
- W2122693242 countsByYear W21226932422015 @default.
- W2122693242 countsByYear W21226932422016 @default.
- W2122693242 countsByYear W21226932422017 @default.
- W2122693242 countsByYear W21226932422018 @default.
- W2122693242 countsByYear W21226932422020 @default.
- W2122693242 countsByYear W21226932422021 @default.
- W2122693242 countsByYear W21226932422022 @default.
- W2122693242 countsByYear W21226932422023 @default.
- W2122693242 crossrefType "journal-article" @default.
- W2122693242 hasAuthorship W2122693242A5013191819 @default.
- W2122693242 hasAuthorship W2122693242A5024533689 @default.
- W2122693242 hasAuthorship W2122693242A5048183050 @default.
- W2122693242 hasAuthorship W2122693242A5081585029 @default.
- W2122693242 hasBestOaLocation W21226932422 @default.
- W2122693242 hasConcept C107457646 @default.
- W2122693242 hasConcept C111472728 @default.
- W2122693242 hasConcept C121332964 @default.
- W2122693242 hasConcept C126314574 @default.
- W2122693242 hasConcept C127413603 @default.
- W2122693242 hasConcept C138885662 @default.
- W2122693242 hasConcept C152223200 @default.
- W2122693242 hasConcept C153294291 @default.
- W2122693242 hasConcept C18762648 @default.
- W2122693242 hasConcept C2777103469 @default.
- W2122693242 hasConcept C2779530757 @default.
- W2122693242 hasConcept C38652104 @default.
- W2122693242 hasConcept C41008148 @default.
- W2122693242 hasConcept C49774154 @default.
- W2122693242 hasConcept C78519656 @default.
- W2122693242 hasConcept C81860439 @default.
- W2122693242 hasConceptScore W2122693242C107457646 @default.
- W2122693242 hasConceptScore W2122693242C111472728 @default.
- W2122693242 hasConceptScore W2122693242C121332964 @default.
- W2122693242 hasConceptScore W2122693242C126314574 @default.
- W2122693242 hasConceptScore W2122693242C127413603 @default.
- W2122693242 hasConceptScore W2122693242C138885662 @default.
- W2122693242 hasConceptScore W2122693242C152223200 @default.
- W2122693242 hasConceptScore W2122693242C153294291 @default.
- W2122693242 hasConceptScore W2122693242C18762648 @default.
- W2122693242 hasConceptScore W2122693242C2777103469 @default.
- W2122693242 hasConceptScore W2122693242C2779530757 @default.
- W2122693242 hasConceptScore W2122693242C38652104 @default.
- W2122693242 hasConceptScore W2122693242C41008148 @default.
- W2122693242 hasConceptScore W2122693242C49774154 @default.
- W2122693242 hasConceptScore W2122693242C78519656 @default.
- W2122693242 hasConceptScore W2122693242C81860439 @default.
- W2122693242 hasIssue "2" @default.
- W2122693242 hasLocation W21226932421 @default.
- W2122693242 hasLocation W21226932422 @default.
- W2122693242 hasLocation W21226932423 @default.
- W2122693242 hasLocation W21226932424 @default.