Matches in SemOpenAlex for { <https://semopenalex.org/work/W2122735474> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2122735474 abstract "OF DISSERTATION Christopher Paul Saunders The Graduate School University of Kentucky 2006 EMPIRICAL PROCESSES FOR ESTIMATED PROJECTIONS OF MULTIVARIATE NORMAL VECTORS WITH APPLICATIONS TO E.D.F. AND CORRELATION TYPE GOODNESS OF FIT TESTS ABSTRACT OF DISSERTATIONOF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Arts and Sciences at the University of Kentucky By Christopher Paul Saunders Lexington, KY Director: Dr. Constance L. Wood, Associate Professor of Statistics Lexington, KY 2006 Copyright © Christopher P. Saunders 2006 ABSTRACT OF DISSERTATIONOF DISSERTATION EMPIRICAL PROCESSES FOR ESTIMATED PROJECTIONS OF MULTIVARIATE NORMAL VECTORS WITH APPLICATIONS TO E.D.F. AND CORRELATION TYPE GOODNESS OF FIT TESTS Goodness-of-fit and correlation tests are considered for dependent univariate data that arises when multivariate data is projected to the real line with a data-suggested linear transformation. Specifically, tests for multivariate normality are investigated. Let { } i Y be a sequence of independent k-variate normal random vectors, and let 0 d be a fixed linear transform from k R to R . For a sequence of linear transforms ( ) { } 1 ˆ , , n d Y Y ... converging almost surely to 0 d , the weak convergence of the empirical process of the standardized projections from d to a tight Gaussian process is established. This tight Gaussian process is identical to that which arises in the univariate case where the mean and standard deviation are estimated by the sample mean and sample standard deviation (Wood, 1975). The tight Gaussian process determines the limiting null distribution of E.D.F. goodness-of-fit statistics applied to the process of the projections. A class of tests for multivariate normality, which are based on the Shapiro-Wilk statistic and the related correlation statistics applied to the dependent univariate data that arises with a data-suggested linear transformation, is also considered. The asymptotic properties for these statistics are established. In both cases, the statistics based on random linear transformations are shown to be asymptotically equivalent to the statistics using the fixed linear transformation. The statistics based on the fixed linear transformation have same critical points as the corresponding tests of univariate normality; this allows an easy implementation of these tests for multivariate normality. Of particular interest are two classes of transforms that have been previously considered for testing multivariate normality and are special cases of the projections considered here. The first transformation, originally considered by Wood (1981), is based on a symmetric decomposition of the inverse sample covariance matrix. The asymptotic properties of these transformed empirical processes were fully developed using classical results. The second class of transforms is the principal components that arise in principal component analysis. Peterson and Stromberg (1998) suggested using these transforms with the univariate Shapiro-Wilk statistic. Using these suggested projections, the limiting distribution of the E.D.F. goodness-of-fit and correlation statistics are developed." @default.
- W2122735474 created "2016-06-24" @default.
- W2122735474 creator A5085841310 @default.
- W2122735474 date "2006-01-01" @default.
- W2122735474 modified "2023-09-27" @default.
- W2122735474 title "EMPIRICAL PROCESSES FOR ESTIMATED PROJECTIONS OF MULTIVARIATE NORMAL VECTORS WITH APPLICATIONS TO E.D.F. AND CORRELATION TYPE GOODNESS OF FIT TESTS" @default.
- W2122735474 cites W1497683195 @default.
- W2122735474 cites W1509689762 @default.
- W2122735474 cites W1964834657 @default.
- W2122735474 cites W1970957555 @default.
- W2122735474 cites W1986359381 @default.
- W2122735474 cites W1991895727 @default.
- W2122735474 cites W1994884074 @default.
- W2122735474 cites W2000031724 @default.
- W2122735474 cites W2005398436 @default.
- W2122735474 cites W2010029425 @default.
- W2122735474 cites W2017245100 @default.
- W2122735474 cites W2022112684 @default.
- W2122735474 cites W2027927914 @default.
- W2122735474 cites W2028818971 @default.
- W2122735474 cites W2035619074 @default.
- W2122735474 cites W2040290262 @default.
- W2122735474 cites W2043845271 @default.
- W2122735474 cites W2060654009 @default.
- W2122735474 cites W2071978833 @default.
- W2122735474 cites W2072155771 @default.
- W2122735474 cites W2074979815 @default.
- W2122735474 cites W2075039598 @default.
- W2122735474 cites W2078438223 @default.
- W2122735474 cites W2091612209 @default.
- W2122735474 cites W2101052591 @default.
- W2122735474 cites W2102596683 @default.
- W2122735474 cites W2110873947 @default.
- W2122735474 cites W2111765930 @default.
- W2122735474 cites W2125334673 @default.
- W2122735474 cites W2127380533 @default.
- W2122735474 cites W2165918462 @default.
- W2122735474 cites W2168745915 @default.
- W2122735474 cites W2169381307 @default.
- W2122735474 cites W2413594434 @default.
- W2122735474 cites W2509839828 @default.
- W2122735474 cites W2529206567 @default.
- W2122735474 cites W2797333853 @default.
- W2122735474 cites W2802739963 @default.
- W2122735474 hasPublicationYear "2006" @default.
- W2122735474 type Work @default.
- W2122735474 sameAs 2122735474 @default.
- W2122735474 citedByCount "0" @default.
- W2122735474 crossrefType "journal-article" @default.
- W2122735474 hasAuthorship W2122735474A5085841310 @default.
- W2122735474 hasConcept C105795698 @default.
- W2122735474 hasConcept C132480984 @default.
- W2122735474 hasConcept C161584116 @default.
- W2122735474 hasConcept C177384507 @default.
- W2122735474 hasConcept C199163554 @default.
- W2122735474 hasConcept C22679943 @default.
- W2122735474 hasConcept C33923547 @default.
- W2122735474 hasConceptScore W2122735474C105795698 @default.
- W2122735474 hasConceptScore W2122735474C132480984 @default.
- W2122735474 hasConceptScore W2122735474C161584116 @default.
- W2122735474 hasConceptScore W2122735474C177384507 @default.
- W2122735474 hasConceptScore W2122735474C199163554 @default.
- W2122735474 hasConceptScore W2122735474C22679943 @default.
- W2122735474 hasConceptScore W2122735474C33923547 @default.
- W2122735474 hasLocation W21227354741 @default.
- W2122735474 hasOpenAccess W2122735474 @default.
- W2122735474 hasPrimaryLocation W21227354741 @default.
- W2122735474 hasRelatedWork W1598241143 @default.
- W2122735474 hasRelatedWork W1971163717 @default.
- W2122735474 hasRelatedWork W1987719740 @default.
- W2122735474 hasRelatedWork W1996669895 @default.
- W2122735474 hasRelatedWork W2005236834 @default.
- W2122735474 hasRelatedWork W2020015664 @default.
- W2122735474 hasRelatedWork W2027927914 @default.
- W2122735474 hasRelatedWork W2042513518 @default.
- W2122735474 hasRelatedWork W2069462378 @default.
- W2122735474 hasRelatedWork W2074071318 @default.
- W2122735474 hasRelatedWork W2086560953 @default.
- W2122735474 hasRelatedWork W264289566 @default.
- W2122735474 hasRelatedWork W2755102756 @default.
- W2122735474 hasRelatedWork W2913095039 @default.
- W2122735474 hasRelatedWork W2963935110 @default.
- W2122735474 hasRelatedWork W2964341471 @default.
- W2122735474 hasRelatedWork W582438744 @default.
- W2122735474 hasRelatedWork W768346033 @default.
- W2122735474 hasRelatedWork W1501624039 @default.
- W2122735474 hasRelatedWork W343760461 @default.
- W2122735474 isParatext "false" @default.
- W2122735474 isRetracted "false" @default.
- W2122735474 magId "2122735474" @default.
- W2122735474 workType "article" @default.